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Executive Summary 
 

This deliverable is the output of the Task 3.5 of AB4Rail project, which is dedicated the analysis of 

options for transport and application protocols and of the Task 3.6, concerning the analysis of security 

versions of the transport and application layer protocols. 

 

Protocol performances have been assessed by means of the software emulator developed in the Task 

3.3, that can reproduce the behavior of the communication bearers as seen at IP protocol level and it 

allows to account for the variations with time of the typical packet impairments characterizing the IP 

layer link such as: bandwidth, latency and packet loss rate. In particular we account for the variations 

with time of the available transmission capacity along the track due to variability of the modulation 

and coding scheme. 

 

The analysis has concerned the secure versions of the transport protocols indicated in Del. 3.4 [1] 

with the addition of the novel QUIC protocol. The following standard application protocols: 

Hypertext Transfer Protocol (HTTP) and File Transfer Protocol (FTP) and their secure versions have 

been also analyzed. Analysis has been carried out in terms of achievable throughput at application 

level, the message delay and the download time. These are the classical key performance indicators 

used in the scientific literature to assess the performance of transmission protocols.  

 

The performances of different combinations of application and transport protocols have been 

analyzed taking into account for different traffic categories that can be that can be traced back to the 

ACS traffic classes. As an example, HTTP/HTTPS application protocols are typically used in 

conjunction with TCP using Cubic congestion control algorithm. In AB4Rail Task 3.5 activities we 

have extended the study of HTTP/HTTPS over TCP with BBR congestion protocol, over the SCTP 

and QUIC protocols. The usage of SCTP for transporting HTTP/HTTPS is new and no results are 

available in the literature. The (“obsolete”) SSH File Transfer Protocol (SFTP), which adopts Secure 

Sockets Layer (SSL) as secure layer has been gradually replaced with the FTPS adopting TLS.  

From our results usage of TCP with BBR and QUIC even in conjunction with HTTP application 

protocol provides the best performance in terms of throughput and latency showing a substantial 

insensitivity to moderate packet loss.  

 

In this deliverable we discuss the results of the research activities indicated in Task 3.6 which respond 

to the objective d in workstream 2, [2]. They concern the security analysis of the transport and 

application protocols. As demonstrated in [3] the capability of one transmission protocol (at transport 

or application level) to protect against one or more risks is related to the presence of specific 

functionalities implemented in the protocol itself.   

 

As indicated in [2] the main output of this activity is a Table indicating the most appropriate (secure) 

transport and transport/application protocol to be selected for the ACS application class. 
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1. Introduction  
 

This document constitutes the Deliverable D3.5 “Analysis of options for transport and application 

protocols and of their secure versions” according to Shift2Rail Joint Undertaking (now Europe's Rail 

Joint Undertaking, EU-RAIL) programme of the project titled “Alternative Bearer for Rail” (Project 

Acronym: AB4Rail, Grant Agreement No 101014517 — IP/ITD/CCA — IP2). On 22nd July 2020, 

the European Commission awarded a grant to the AB4Rail consortium of the Shift2Rail / Horizon 

2020 call (S2R-OC-IP2-02-2020). AB4Rail is a project connected to the development of a new 

Communication System planned within the Technical Demonstrator TD2.1 of the 2nd Innovation 

Programme (IP2) of Shift2Rail JU: Advanced Traffic Management & Control Systems. 

 

The IP2 “Advanced Traffic Management & Control Systems” is one of the five asset-specific 

Innovation Programmes (IPs), covering all the different structural (technical) and functional (process) 

sub-systems related to control, command, and communication of railway systems. 

 

1.1 Purpose and scope of the document 

The aim of this document is to identify the appropriate transport and application protocol pair(s) on 

realistic railway scenarios also including security. To this purpose, we analyze the selected transport 

protocols in the Deliverable 3.4 (i.e., TCP in its versions Cubic and bottleneck bandwidth and round-

trip propagation time (BBR) congestion control algorithms, SCTP) by adding them the TLS. QUIC 

is also included in the analysis. In this evaluation we considered a stream between a client mounted 

on-board of a train and a remote server. Then we evaluate the application protocols HTTP and FPT 

by downloading a webpage with different characteristics and a file with several sizes. 

 

 

1.2 Document organization 

The document is organized according to AB4Rail Grant Agreement Number 101014517 (RD-1) and 

AB4Rail Consortium Agreement (RD-2). The document structure is the following.  

 

In Section 2, we introduce the organization of the activities for the transport and application protocol 

evaluation at high-level.  

 

In Section 3, we describe the methodology used for the analysis of the transport protocols that use 

TLS for the protection of end-to-end transmissions through cryptographic techniques. 

 

In Section4, it is detailed the generation of the source traffic in terms of streams parameters, web 

pages for download and message characteristics. Moreover, evaluation parameters have also defined 

to be used for the subsequent analysis. 

 

In Section 5, we summarize the main features of the QUIC protocol and we review the main 

implementations of QUIC and their related software libraries.  

 

In Section 6 we report and discuss the results obtained by the emulator developed in Task 3.3 and 

described in the Deliverable 3.3 [4] of the AB4Rail project. We considered the following evaluations: 
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• The analysis of the secure transport protocols, which include the TLS layer; 

• The analysis of the application protocols HTTP, FTP, HTTPS and FTPS; 

• The analysis of the periodic short message delivery 

 

In Section 7, we analyze the security of the protocols working at transport and application layers, by 

considering threats and possible defense techniques. We focused on TCP, UDP and SCTP by adding 

them security functionalities provided by TLS. This way application protocols as HTTP and FTP are 

able to transmit data from the source to the destination in a secure way. 

 

Finally, conclusions are drawn in Section 7. 

 

 

1.3 Reference Documents 

Table 1: Reference Documents. 

Document Number  Document Description  

RD-1 AB4Rail Grant Agreement Number 101014517 – IP/ITD/CCA – IP2 

RD-2 AB4Rail Consortium Agreement   
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2. Description and organization of activities 
 

This document provides the results concerning the analysis of options for transport and application 

protocols. The document also contains the results concerning the analysis of secure version of the 

transport and application layer protocols.  

 

Results presented in this Deliverable respond to objective c and d indicated in the workstream 2 in 

[2]. Activities have been devoted to the identification of the appropriate transport and application 

protocol pair(s) ensuring the required communication and characteristics capabilities for specific 

classes of railway application envisaged for Adaptable Communication System (ACS) applications 

i.e., critical and business. From the results and conclusions presented in Deliverable 3.4 [1] we 

restricted our analysis to the main rail applications requiring the following standard application 

protocols for proper operations: Hypertext Transfer Protocol (HTTP) and File Transfer Protocol 

(FTP). The message-based classes of applications that should be considered in the analysis of 

application and transport protocols include Session Initiation Protocol (SIP)/SDP messages for ACS 

signaling, European Rail Traffic Management System/European Train Control System 

(ERTMS/ETCS), web-based railway applications and file transfer/download applications. 

 

The transport protocols identified and selected in the previous Task 3.4 will be considered in these 

activities. For each of the considered transport/application protocol pair for which a (stable) software 

implementation is available (on Linux) the performance evaluation will be carried out using the IP 

emulator/simulator developed in Task 3.3 which is described in Deliverable 3.3 [4].  

 

Taking into account for the results obtained in the Deliverable D3.4, evaluation activities in this task 

have organized the activities detailed in [2] as follows. We have identified the main classes of traffic 

to be used for protocol assessment:  

 
1. Transfer of data streams of varying length for the testing of the secure versions of the considered 

transport protocols i.e., Transmission Control Protocol (TCP), Stream Control Transmission Protocol 

(SCTP) and Quick UDP Internet Connections (QUIC)), which include the Transport Layer Security 

(TLS) protocol layer. It should be remarked that the analysis of transport protocols, originally confined 

to Task 3.4 activities, continues in this Task 3.5 because QUIC protocol which is a secure protocol by 

default. In this case performance comparison will be carried out  

 

2. File transfer for testing FTP and File Transfer Protocol Secure (FTPS) application protocols to be used 

for file transfer-based services.  

 

3. Download of web-pages of different sizes and complexity for testing the HTTP/HTTPS (Hypertext 

Transfer Protocol Secure) application protocols;  

 

4. Periodic transmission of messages with variable length using transport protocols TCP (CUBIC+BBR), 

SCTP and QUIC This traffic class is important for considering the transmission delay of messages 

transmitted by protocols such as SIP/SDP and ERTMS/ETCS that are used for ACS and railway 

control/management. These messages are transmitted through the on-board ACS-GW. 

 

To assess performances of the considered transport and application protocols, we have re-used the IP 

emulator developed in [Del.3.3 of AB4Rail] that was also used to obtain the results in Del. 3.4 [1].  
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In analyzing the performance of HTTP/HTTPS we have considered different combination of transport 

and application pairs. In particular, HTTP/HTTPS are typically used in conjunction with TCP 

implementing Cubic congestion control. In AB4Rail Task 3.5 activities we have extended the study 

to the HTTP/HTTPS over TCP with BBR congestion protocol, over the SCTP and QUIC protocols. 

The usage of SCTP for transporting HTTP/HTTPS is new and no results are available in the literature. 

 

On the basis of the achieved results, we have determined the application/protocol pair allowing to 

achieve the end-to-end performance for the selected application traffic classes. Application/transport 

protocol analysis has been carried out in terms of: technology features such as maturity flexibility 

(this aspect is important for QUIC protocol which is currently under standardization), latency and the 

achievable throughput under different operating conditions. For what concerns traffic prioritization, 

the considered transport and application protocols are neutral with respect to the data flows they 

transport i.e., they do not implement any mechanism for traffic prioritization. These mechanisms 

(when and if necessary) could be implemented at application level so to manage the flows generated 

by the application that are transmitted using the (available) underlying transport protocol. 

 

As evidenced in the Deliverable 3.4 [1] and even in this deliverable, the possibility of adopting well 

mature and widely accepted Internet Engineering Task Force (IETF) network protocols based on 

TCP/IP suite, as in ACS communications, allows to facilitate/simplify engineering, operational and 

implementation aspects. In particular, implementation complexity is drastically reduced since 

effective and stable implementations of these protocols are available on the market as well as on the 

open-source community including the Linux OS. In addition, several and widely used (open-source) 

tools for debugging, monitoring packet flows and collecting data for successive analysis are available.  

 

Some of them have been used in our research activities to extract performance data from the emulator 

runs and to monitor end-to-end packet flows so to detect possible protocol anomalies or malfunctions. 

The Tshark (https://www.wireshark.org/docs/man-pages/tshark.html) (i.e., the command line version 

of wireshark) tool has been used to collect statistics. The aspects of monitoring packet flows are 

important for ACS specially to assess control plane proper operations. The main output of this first 

activity involving the analysis of secure transport protocols and some combinations of 

application/transport protocols for task is a Table indicating the most appropriate transport 

protocol/application pair(s) to be selected for each ACS application class that can be casted in one of 

the four traffic categories indicated in the previous points 1-4, that we have considered to assess 

performance. From the results presented in Deliverable 3.4 results will be obtained considering only 

the challenging mainline railway scenario. In fact, it should be remarked that from [1] we didn’t 

observe a marked dependence of transport protocol performance on the rail scenario.  

 

In this deliverable we also report the results of the research activities indicated in Task 3.6 and 

concerning the security analysis of the transport and application protocols. As indicated in [2] the 

analysis focuses on the following list of general technical risks indicated in EN 50159 regarding the 

safety-related messages for specific railway applications such as ERTMS/ETCS: 

 

• Repetition of message 

• Deletion of message 

• Insertion of message 

• Re-sequencing of two or more messages 

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
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• Corruption of message 

• Delay of message  

• Masquerade (a type of attack where the attacker pretends to be an authorized user of a system so to 

gain access to it or to gain greater privileges than they are authorized for).  

 

The Task 3.6 activities respond to the objective d in workstream 2, [2]. As demonstrated in [EN 

50159] the possibility for the transmission protocol (at transport or application level) to protect 

against one or more of the risks indicated in the previous points is strictly related to some specific 

functionalities implemented in the protocol itself.  

 

Starting from this observation, to respond properly to the objective d in workstream 2 we have 

extended the analysis procedure reported in [EN 50159]. The extended procedure allows to achieve 

the security assessment of both transport and the considered application/transport protocols. In 

particular, we have analyzed the security aspects of: 

 
a. TCP, User Datagram Protocol (UDP), SCTP and of their secure versions 

b. QUIC transport protocols and the  

c. application protocols FTP and FTPS, HTTP and HTTPS.  

Analysis has been carried out with respect to the risks indicated in the previous list. The (obsolete) 

SSH File Transfer Protocol (SFTP), which adopts Secure Sockets Layer (SSL) as secure layer has 

been gradually replaced with the FTPS adopting TLS. The RaSTA in the security context is 

investigated in [1] and the interested reader is referred to this paper.  

 

As in the previous case and as indicated in [2] the main output of this activity is a Table indicating 

the most appropriate (secure) transport and transport/protocol to be selected for the ACS application 

class and for each one of the considered network scenarios. 

 

Note: The Remote Desktop Protocol (RDP) indicated in the original project proposal is a secure 

network communications protocol developed by Microsoft for the transfer of PC desktop contents 

specifically and only between client and server running Windows OS. The RDP allows network 

administrators to remotely diagnose problems that individual users encounter and gives users remote 

access to their physical work desktop computers. We believe that remote reproduction of a Windows 

OS desktop on a remote machine has non practical application in critical and business railway 

applications services that are the two categories of services and applications analyzed in AB4Rail for 

ACS.  The RDP protocol could be of some interest when considering connectivity services oriented 

to train passengers that (maybe) could have some interest in remotely connecting with their 

workstation. In fact, RDP can be used by employees working from home or traveling who need access 

to their work computers. User oriented connectivity services have never been of interest in AB4Rail 

since they are not considered in ACS development being ACS (and in particular the on-board ACS-

GW) specifically designed to offer connectivity for critical and business railway services.  
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3. Analysis of secure transport protocols: methodology 
 

This paragraph describes the methodology used for the analysis of the transport protocols that use 

TLS technology (v. 1.3) for the protection of end-to-end transmissions through cryptographic 

techniques.  

 

The considered transport protocols including the TLS layer are listed in the following points: 

[Del.of.3.4]: 

 
1. TCP (Cubic and Bottleneck Bandwidth and Round-trip propagation time (BBR)) 

 

2. QUIC (IETF version) 

 

3. SCTP 

 

The principle scheme of the emulator arrangement used for the performance assessment of the 

transport and application/transport protocols is depicted in Figure 1. 

 

 

Figure 1. High level emulator scheme used for the assessment of Transport and 

Application/Transport protocols 

 

 
 

 

The scheme in Figure 1 is inherited from that presented in D3.4. As shown in Figure 1 the only 

modifications we have introduced are on the software developed for generating traffic, collecting 
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statistics and to perform on-board ACS GW from/to trackside ACS-GW packet communications. We 

consider the testing of secure versions of the transport protocols in D3.4 and the FTP/HTTP 

application protocols including their secure versions i.e., HTTPS/FTPS. 

 

Even in this case communications between the on-board and the trackside ACS-GWs are considered. 

It is assumed the on-board ACS Gateway (ACS-GW) uses Generic Routing Encapsulation (GRE) 

tunnels to establish a connection with the remote ACS-GW located on the trackside side. The ACS 

connection emulator that interconnects the client on board the train with the server is the same used 

in D.34 and which was developed in Task 3.3 and whose characteristics are detailed in D3.3 [4]. This 

emulator implements: 

 
a. Connection between client and server via GRE tunnel 

 

b. Variability of the time of the QoS parameters that characterize the performance of the IP link i.e.: 

delay (i.e., latency), packet loss, link capacity, jitter.  

 

As indicated in D3.4, the temporal variability of these parameters, including the link capacity, is 

achieved by taking into account the speed profile of the train moving along the considered section. 

While the train moves into the cell, the modulation coding scheme can change in accordance with the 

distance of the train from the receiving base station i.e., the eNB in the LTE case. In addition, as 

illustrated in [1] the transmission capacity available to the train is also function of the number of 

trains in the same cell at the same time.  

The performance results presented in this Deliverable have been obtained considering the Italian 

railway section from Rome to Florence at high speed (mainline scenario) and a realistic train-speed 

vs time profile. 

 

For the analysis of the transport and application protocols (objective of Tasks 3.5 and 3.6 of the 

AB4Rail project) we have implemented programs acting as traffic sources and sinks indicated in 

Figure 1. In particular, source software generates traffic in accordance with the required packet 

statistics; sink software can receive and analyze traffic to extract parameters required to achieve 

statistics of the performance parameters. 

 

As shown in Figure 1 data sources can inject traffic over the application protocol layer (HTTP(S) or 

FTP(S)) or can directly interface with the (secure versions) of the underlying transport protocols. The 

Python programming language has been used to program the traffic sources and sinks shown in Figure 

1. The following standard libraries, which are well tested and freely available on the Internet, have 

been considered in software development. 
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Table 2: Standard Python libraries considered in software development. 

 

Library Description 

Python Socketserver Framework for the fast realization of network servers based on un-

secure TCP and UDP protocols using standard sockets 

Python Aioquic Pythonn implementation for the QUIC IETF protocol 

Python HTTP client It defines classes which implement the client side of the HTTP and 

HTTPS protocols 

Python Urllib3 library Library for the HTTP client implementation based on TCP for Python 

Python HTTP server It defines classes for implementing HTTP servers using un-secure TCP 

transport protocols only 

Python TLS/SSL 

wrapper for socket 

objects 

It provides access to TLS (often known as “Secure Sockets Layer”) 

encryption and peer authentication facilities for network sockets, both 

client-side and server-side. This module uses the OpenSSL library 

Python socket library It provides access to the BSD socket interface implemented on many 

OSs 

Ftpdlib python library It implements FTP and FTPS server classes 

Ftplib python library It implements the FTP and FTPS client classes 

 

 

For reasons that will be cleared in the next paragraph, we have also considered the LS-QUIC library 

implementing a well-tested and consolidated production version of the QUIC protocol. 

 

Several Python libraries indicated in Table 2 implement classes for creating servers (sinks) and clients 

(source) that use IP connections based on the TCP/UDP or SCTP transport protocols without adding 

any functionality to ensure secure transmissions.  

 

Secure transport protocols are obtained by adding the TLS layer to the existing protocol layer. A good 

part of the programming work carried out in Task 3.5 has concerned the extension of the libraries 

Python socket and Python HHTP in Table 2 to realize client and server software including secure 

functionalities and in particular to implement the protocol stacks for the following secure transport 

protocols:  

 

Table 3: Considered Secure Transport/application protocols 

Combination Description 

 Secure transport protocols 

TLS + TCP TCP layer can use Cubic or BBR as congestion 

control technique 

TLS + SCTP This is a new configuration not discussed in the 

current literature 

QUIC Usage of Python Aioquic library or LS-QUIC 

(see after) 

The QUIC Protocol is an important (maybe 

unique) example of secure transport protocols 

based on UDP providing and extending the 

features of the TCP protocol 
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 Secure application protocols 

HTTP and 

HTTPS  

They are transmitted over TCP (Cubic and 

BBR) and SCTP 

The motivations leading to exclude QUIC 

protocols are summarized in the next Section 

FTP and 

FTPS  

They are transmitted over TCP (Cubic and 

BBR) 

 

 

In order to program the transmission software (clients and servers in Table 3) implementing the secure 

protocol stacks to be used in the emulator in Figure 1 we have extended the classes available in the 

Python libraries in Table 2. 

 

Due to lack of detailed documentation concerning the organization of the classes defined in the 

several libraries in Table 2, a significant developing effort has been devoted to: 

 
1. Read and analyse in detail the source code of the base client and server classes implementing TCP 

transport provided by the libraries in Table 2; 

2. Identify the base server and client classes to be extended (i.e., sub-classed) to introduce the necessary 

modifications so to: 

a. Add the SCTP socket to the base server and client python classes 

b. To properly set the congestion control algorithm in the TCP stack i.e., the TCP BBR and 

CUBIC sockets; 

c. Add the TLS layer to the TCP (with CUBIC and BBR congestion control algorithms) and 

SCTP sockets using the Python SSL library (see Table 2);  

d. The QUIC already implements the TLS layer by default; two implementations of QUIC 

protocol have been considered for our evaluation (see next); 

e. Add the TLS layer to the existing HTTP server so to obtain HTTPS protocol stack 

f. Add the SCTP socket to the existing HTTP server classes and to the HTTPS server class 

indicated in previous point c. 

3. The available FTP and FTPS classes have required no modifications for the creation of the client 

(source) and server (sink) entities in Table 3. 

 

As an example, in Figure 2 we indicate the python code implementing the server class for the SCTP 

serves using TLS. 
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Figure 2. Part of python code implementing the secure server for SCTP transport protocol with TLS 

 

 
 

 

 

 

 
#!/usr/bin/python3 

import socketserver 

import socket 

import ssl 

import sctp 

 

class TCPServer(socketserver.TCPServer): 

    pass 

 

class BaseServer(socketserver.BaseServer): 

    pass 

 

 

# Sub-classing of TCP server in SCTPserver class - the constructor is updated  

class SCTPServer(TCPServer): 

     

    def __init__(self, server_address, RequestHandlerClass, bind_and_activate=True): 

         

        BaseServer.__init__(self, server_address, RequestHandlerClass) 

         

        self.socket = sctp.sctpsocket_tcp(socket.AF_INET) # 1. substitute the TCP socket with the SCTP socket 

        if bind_and_activate: 

            try: 

                self.server_bind() 

                self.server_activate() 

            except: 

                self.server_close() 

                raise 

 

class SSLSCTPServer(SCTPServer): 

    def __init__(self, server_address, RequestHandlerClass, bind_and_activate=True): 

                 

        SCTPServer.__init__(self, server_address, RequestHandlerClass, False) 

 

        context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER) 

        context.load_cert_chain('server-crt.pem', 'server-key.pem') 

 

        self.socket = context.wrap_socket(self.socket, server_side=True) # 2. add TLS layer to SCTP socket 

 

        if bind_and_activate: 

            self.server_bind() 

            self.server_activate() 
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As shown in Figure 2, first we generate a new SCTPserver class by sub-classing the TCP server 

class available in the TCP python library in Table 2 (see point 1 in Figure 2, highlighted in red). The 

new SCTP secure (i.e., TLS based) server class SSLSCTPServer is then obtained by sub-classing 

the new SCTPserver class by wrapping the SCTP socket with the TLS layer (see point n.2 in Figure 

2, highlighted in red) the original TCP server class defined in python library indicated in Table 2. 

 

 

  

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view


 

 

 

 

 
[AB4Rail] GA [101014517] D [3.5]  

[Analysis of options for transport and application protocols and of their secure versions] 

23 | 79 

 

 

4. Traffic generation and parameters  
 

4.1 Source traffic generation and assumptions 

The on-board ACS-GW and the remote ACS-GW in Figure 1 exchange packets. Depending on the 

protocol (transport or application/transport) analysis we have considered the possibility of generating 

different types of traffic to/from the server and the client.  

 

For the testing of transport protocols, we have assumed the on-board ACS-GW generates traffic 

directed to the trackside ACS-GW and vice-versa. We have assumed the upstream and downstream 

links show the same behavior in terms of time variability of the IP link parameters. This is a typical 

and well accepted assumption in performance analysis of full duplex communication links where it 

is assumed that the two separate links in the network behave in the same manner. In this case, the 

protocol behavior observed in one direction is also representative of that observed in the reverse 

direction. For further considerations in D3.4 we have also reported performance results by varying 

the amount of the available maximum transmission capacity (Cmax) on the IP link to account for the 

asymmetric difference between uplink and downlink transmission capacity. However, as shown from 

results in D3.4 the final conclusions on the overall behavior and performance of transport protocols 

after the increase of transmission capacity are unchanged, except for the natural modification of the 

absolute values of the performance indicators that obviously improve.  

 

For application/transport protocol testing including HTTP(S) and FTP(S) protocols we have 

considered the ACS-GW on the trackside as generating the greatest amount of traffic after the request 

from the client for downloading one web page (for HTTP(S)) or one file (for FTP(S)). In this case 

the maximum available traffic capacity on the IP link is always set to that of downlink. In this case 

the performance statistics are evaluated at the on-board side as shown in Figure 1 for HTTP(S) and 

FTP(S). 

 

 

4.2 Traffic generation for transport protocol testing. 

 

Similarly, to the approach in D3.4, for the testing of secure versions of the transport protocols 

including TCP (BBR+CUBIC), SCTP with TLS and QUIC we have considered the generation of data 

streams with different lengths of:  

 

• 500 kbytes (short stream),  

• 1 Mbytes and  

• 2 Mbytes (long stream).  

 

This allows to test the robustness of transport protocols with respect to time variable channel 

transmission capacity at IP layer as in the considered railway scenario. In fact, when considering the 

transmission assumptions in D3.4 (i.e., LTE technology with 1.28 MHz bandwidth operating in the 
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already existing GSM-R bandwidth) the maximum achievable (bit rate) transmission capacity under 

the most favourable transmission conditions (i.e., modulation-coding-scheme (MCS) with 64 QAM 

with 4/5 coding) is about 5.2 Mbps. When the train moves in the cell the available transmission 

capacity can vary during the transmission of the stream due to variability of the achievable MCS to 

account for the distance of the train from the eNB. Accounting for transmission capacity variability 

with time allows to evidence the ability of the transport protocol to rapidly adapt to time varying 

channel conditions even in the presence of packet loss (that can be set in the emulator). The procedure 

we have considered to evaluate the protocol performance such as latency and throughput is that used 

by OOKLA (https://www.ookla.com/, https://www.speedtest.net/it).  

 

For further testing of transport protocols, we have considered variable bit rate sources sending short 

time-separated messages of different lengths. The lengths of the considered messages are: 

 

• 1 kbyte 

• 10 kbyte 

In the 1 kbyte case the length of the packet is smaller than the typical MTU of the underlying transport 

protocol layer (in the TCP case the typical MTU is about 1460 bytes). This case can account for 

SIP/SDP and ERTMS/ETCS messages exchange where the entire message can be contained in one 

MTU. In the second case the length of the message is larger than MTU and the loss of one IP packet 

could lead transport packet to require retransmission.  

Packets from the on-board ACS-GW to the trackside ACG-GW are generated on a periodic basis.  

 

4.3 Traffic generation for application/transport protocols analysis 

 

For the analysis of HTTP(S) protocol we have considered the generation of traffic from the server to 

the client consisting in the retrieval of one web page from the server (i.e., this is the typical usage of 

HTTP(S) protocol): 

 
1 Download of web-pages from a web-server for the testing of HTTP(S) application/transport protocols 

based on TCP (CUBIC or BBR) and SCTP transport protocols; the considered web pages have different 

dimensions. The first one is the ETSI reference page (https://www.akostest.net/kepler/) of about 1 Mbyte 

that contains the main index.htm file of about 17 kbytes and several small files of some kbytes (many files 

are below 1 kbyte) of images and text. 

 
2 The second web page is the main page of an Italian daily newspaper that has been downloaded and saved 

from the corresponding website. The overall size of the pages is about 5 Mbytes. The main .htm file is of 

580 kbytes and the other several short files whose sizes varies from few kbytes to hundreds of kbytes. The 

download of web page consists in downloading the main htm file and all the associated files to the web 

page. 

 

The snapshots of the two web pages i.e., the ETSI page and the Newspaper page are depicted in 

Figure 3 and Figure 4. 
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Figure 3. Snapshot of the Kepler ETSI reference HTML page to be used for testing HTTP(S) 

protocols. 
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Figure 4. Snapshot of the newspaper reference HTML page to be used for testing HTTP(S) protocols. 

 

 
 

 

Figure 4 is the snapshot of the Newspaper HTML page. The page contains a lot of pictures of variable 

size (from 1 kbyte to hundreds of kbytes), text files, javascript files, html files. 

 

For the download of each file in the web-page (e.g., images, html files, text files, javascript and json 

files etc.) a new HTTP(S) connection was opened and successively closed after successful file 

download.  

 

For FTP(S) application/transport protocol over TCP (CUBIC or BBR) testing we have considered the 

download of data files of different sizes. The sizes of the files vary from 500 kbytes, 1 Mbytes and 

2Mbytes.  
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4.4 Performance parameters considered for performance assessment 

 

From results in D.3.4 the performance parameters that have been considered for assessment of 

transport and application/transport protocols are indicated in the following list: 

 
1. Achievable throughput (TH) at the receiver side. The following statistics have been considered: 

a. The TH evaluated over the total transmission time i.e. 

 

𝑇𝐻 =
Total Transmitted data 

Entire duration of transmission
 

 
b. The cumulative distribution function (cdf) of TH; this is obtained after repeating emulation 

several times (i.e., up to 100 repetitions) under the same operating conditions i.e., mean of 

latency and packet loss and for varying available transmission capacity 

 

c. Statistics of the total transmission time and the statistics of TH 

 

2. In the case of application/transport protocol assessment we have considered the statistics of the 

download time of the single web page (HTTP(S)) and the file download time (FTP(S)) such as the 

CDF (Cumulative Distribution Function) and its average.  

 

3. In the case of short message transmission, the cdf of the transmission delay has been evaluated for the 

variable lengths of the transmitted messages. 

All data have been collected considering different operating scenario conditions including (randomly 

varying) one-way latency around the mean of 25, 50 and 150 ms (the mean round trip time is twice 

the average single link latency). One-way latency has been varied of ±5ms around the mean in the 

25ms and 50ms cases while variation has been increased to ±10ms in the case of 150ms mean. 

Variable one way packet loss, 0, 0.1,0.3,0.5, 1.0, 2.5 has been included in emulation.  

 

 

Note: for enabling TLS layer we have first created a private certification authority to authenticate 

client and server. The CA certificate is ca-crt.pem. Then we have generated the public and private 

key and the authenticated certificates for the client (e.g., client1-crt.pem, client1-key and client1-

csr.pem) and for the server (server-crt.pem, server-key and server-csr.pem). These files are provided 

to the client and to the server to enable TLS operations during emulation run. The openSSL library 

has been used for this purpose. 
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5. QUIC transport protocol analysis 
 

QUIC is a general-purpose transport layer network protocol initially designed at Google, 

implemented, and deployed in 2012, announced publicly in 2013 as experimentation broadened, and 

described at an IETF meeting. Google suggested this as a user-level protocol running over UDP 

instead of TCP, thus removing the necessity for the TCP protocol's initial handshake function. It runs 

its encryption scheme, which is comparable to TLS, combines link establishment and key agreement 

into 1 RTT only.  

 

Unlike what happens with TCP, the QUIC protocol allows communications only in encrypted form. 

Since un-encrypted communication forms in QUIC are forbidden by design, privacy and security are 

inherently part of QUIC data transfers. This is important for cybersecurity but it may also represent 

a useless overhead when encryption is not strictly required. But the real breakthrough of QUIC 

consists in the time required to establish a secure connection when compared to TCP + TLS since the 

overhead during connection setup is reduced, see Deliverable 3.1 in [5].  

 

 

5.1 Current status of QUIC development and deployment 

 

The IETF started to work on QUIC not from scratch. In 2012, Google designed its own version of 

QUIC and then deployed it both in its popular Chrome browser and most of its services, including 

YouTube and search. This allowed them to observe the protocol in action and tweak its design before 

submitting it to the IETF for consideration in 2016. The IETF QUIC Working Group took Google’s 

documents as input, and has created a set of drafts that used them as a starting point. 

 

After IETF several aspects of the protocol have been changed. The biggest change is in how 

encryption is negotiated. Google QUIC's bespoke encryption handshake was new to many, whereas 

Transport Layer Security (TLS) is more widely understood, has more features, and is much more 

widely supported in both implementations, and deployment. Considering the investment the 

community has in TLS research, security analysis, implementation, and deployment, the QUIC 

Working Group was chartered to use it as the basis of encryption in QUIC. In this case, when the 

QUIC handshake starts, the TLS handshake takes place inside of the QUIC frames, so that the peers 

can authenticate each other and derive session keys for encryption. Once that takes place, those keys 

are used to encrypt the QUIC frames. QUIC also has unidirectional as well as bidirectional streams, 

to aid in composing different types of applications on it. 

 

HTTP over QUIC has changed as well. Besides explicitly separating it out into a separate document, 

Google's QUIC used HTTP/2's header compression scheme, HPACK. However, HPACK dictionaries 

track their state by assuming that ordering of messages on different streams is guaranteed by TCP–

something that QUIC doesn't provide. So, we've designed a new, QUIC-specific header compression 

scheme, QPACK. 

 

There are few downsides to the QUIC protocol. It improves web communications and reduces 

latency, but it's still in its experimental stages. It's not widely adopted by other websites or web 

servers, nor is it supported by cybersecurity tools such as firewalls [6]. Currently supported QUIC 

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
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https://en.wikipedia.org/wiki/Transport_Layer_Security
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://datatracker.ietf.org/doc/draft-tsvwg-quic-protocol/
https://datatracker.ietf.org/wg/quic/about/
https://tools.ietf.org/html/draft-ietf-quic-transport-16#section-2
https://datatracker.ietf.org/doc/draft-ietf-quic-http/
https://datatracker.ietf.org/doc/draft-ietf-quic-qpack/
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versions are v1, Internet-Draft versions 29, and 27; and the older “Google” QUIC versions Q043, 

Q046, an Q050. Firewalls pass HTTP and HTTPS traffic through a web protection module, which 

performs malware scanning. But what happens if the connection is made via QUIC? Well, the browser 

and supporting web servers do recognize it as a QUIC connection, but the device you are browsing 

on may not. It treats it like simple UDP traffic, which doesn’t get sent to your firewall’s web 

protection module. The Official IETF document of QUIC is still an Internet Draft. 

 

 

5.2 QUIC available implementations 

5.2.1 Python Aioquic library 

 

Aioquic is the python library for the QUIC network protocol in Python. We have started our 

investigations considering the Aioquic library. This library implements a QUIC protocol stack based 

on the the New Reno congestion controller and as shown in the following this may lead to reduced 

QUIC performance when compared to TCP using BBR congestion control. Unfortunately, it is not 

easy to change the congestion control algorithm in Aioquic without re-writing many parts of the 

available python source code. It is out of the scope of AB4Rail project to extend aioquic library to 

include BBR or whatever other congestion control strategy. Aioquic features a minimal TLS v1.3 

implementation, a QUIC stack and an HTTP/3 stack. QUIC was standardised in RFC 9000 RFC 9001 

[7] [8], but HTTP/3 standardisation is still ongoing. aioquic closely tracks the specification drafts and 

is regularly tested for interoperability against other QUIC implementations. 

For this reason in our investigation, we have also considered other (development) QUIC libraries 

which are freely available on the Internet. The most important seems to be LS-QUIC. It is written in 

C and implements QUIC protocol using Cubic and BBR congestion algorithms.  

 

 

5.2.2 LS-QUIC library 

 

LiteSpeed QUIC (LSQUIC) Library is an open-source implementation of QUIC and HTTP/3 

functionality for servers and clients. LSQUIC is: fast, flexible and (very important) production-ready. 

Currently supported QUIC versions are v1, Internet-Draft versions 29, and 27; and the older “Google” 

QUIC versions Q043, Q046, an Q050. It should be not very difficult (in principle) to embed LS-

QUIC into products using common network programming. LS-QUIC does not use sockets to receive 

and send packets; that is handled by the user-supplied callbacks. The library also does not mandate 

the use of any particular event loop. Instead, it has functions to help the user schedule events.  

 

The various callbacks and settings are supplied to the engine constructor. LS-QUIC keeps QUIC 

connections in several data structures in order to process them efficiently. Connections that need 

processing are kept in two priority queues: one holds connections that are ready to be processed (or 

“ticked”) and the other orders connections by their next timer value. As a result, no connection is 

processed needlessly. For more detail the reader is referred to [9]. 

 

 

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://nordvpn.com/blog/https-vs-vpn/
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For our purposes we have used the demo programs (with many options that can be set) provided by 

LS-QUIC authors that implement client and server software to: 

 
a. Test and evaluate performance of QUIC protocol for data transfer (i.e., QUIC operations as basic 

transport protocol); 

 

b. Test and evaluate QUIC performance for HTTP/3 data transfer (i.e., QUIC supporting HTTP data 

transfer). 

 

  

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
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6. Performance Results 
 

In this section we discuss and analyze the results obtained from emulation for the considered transport 

and application protocols. We reported also results for secure version of the HTTP and FTP. 

Moreover, we considered the delivery of short messages. 

 

Results are organized in three main subsections: 
1. Results for transport layer protocols 

2. Results for application layer protocols, and  

3. Results for short message delivery 

 

For each of them we also provide an analysis and some comments on the results. 

 

 

6.1 Secure versions of the transport protocols 

In this section we considered the following transport protocols: TCP-CUBIC, TCP-BBR, QUIC, 

SCTP and LS-QUIC. As outlined in the previous Section performance are obtained considering the 

transfer of blocks of data of variable length ranging from 500 kBytes to 2 Mbytes. This method of 

assessing performance of transport protocol is commonly used in the real networks to measure 

performance of the link in real time. 

 

In Figure 5 we reported the average Throughput as a function of the channel latency for the ideal case 

(PL=0%) in (a) and for a packet loss of 1% in (b). TCP-CUBIC and TCP-BBR show similar 

performance (slightly worst for CUBIC in case of PL=1%), having from approximately 2 Mbit/s for 

25 ms to 1 Mbit/s for 150 ms. SCTP has the worst performance in all cases (in terms of packet loss 

and channel latency).  

 

QUIC has the best performance in ideal case and for low channel latencies (25 ms) but it rapidly 

degrades showing lower performance than SCTP for latency of 150 ms. This is due to the available 

Python Aioquic software implementation which adopts the congestion control algorithm of New 

Reno type. On the contrary, LS-QUIC, which implements an adaptive congestion control algorithm, 

properly selecting BBR or CUBIC, overperforms the other transport protocols. Moreover, as in the 

case of TCP, since LS-QUIC adopts BBR, QUIC performance is slightly dependent by the packet 

loss experienced in the communication channel, showing performance in the ideal and PL=1% cases 

which are close. These results, once again, evidence the importance of the proper selection of the 

congestion control algorithm in the transport protocol (secure or not secure) to achieve performance. 
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Figure 5. Average Throughput vs channel latency for: (a) PL=0% (ideal case) and (b) PL=1%. 

 

 
(a) 

 
(b) 

 

 

In Figure 6, the average Throughput is reported as a function of the packet loss variation in the 

communication channel. We considered two channel latency: 25 ms in Figure 6a and 150 ms in Figure 

6b. TCP-BBR and LS-QUIC show the best performance as they are slightly dependent by the packet 

loss both for low latency and higher latency. This is due to the BBR congestion control algorithm 

adopted in both transport protocols. TCP-CUBIC has a good behavior (i.e., similar to that of TCP-

BBR) for low packet loss values but it worsens for higher packet loss. The SCTP has lower 

performance with respect to TCP-BBR and TCP-CUBIC in all cases (packet loss and latency). 

Instead, QUIC provides the best performance for low latency and low packet loss (Aioquic and LS-

QUIC), while QUIC (aioquic) sensibly degrades when latency increases. Instead, LS-QUIC 

outperforms other protocols. This behavior is mainly due to the selected implementation of the 

congestion control algorithm. In particular, for QUIC, the Aioquic adopts New Reno congestion 

control algorithm and for latency of 150 ms the throughput is lower than SCTP. Instead, LS-QUIC 

adopts BBR and, depending on the estimated RTT, LS-QUIC can adaptively switch to Cubic. 
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Figure 6. Average Throughput vs packet loss for (a) channel latency = 25 ms and (b) channel 

latency = 150 ms. 

 

 
(a) 

 
(b) 

In Figure 7 we reported the average Throughput as a function of the transmitted file for a channel 

latency of 25 ms. We considered two packet loss: 0% (ideal) in Figure 7a and 1% in Figure 7b.  

As for the other plots, QUIC outperforms the other transport protocols in case of ideal transmission 

(i.e., PL=0%) but it degrades under the experienced Throughput of TCP-BBR, TCP-CUBIC and LS-

QUIC for PL=1%. In both cases, SCTP has the lowest Throughput on average as also indicated in 

Del. 3.4 [1]. 

 

 

Figure 7. Average Throughput vs file size for a channel latency of 25 ms and for (a) PL=0% (ideal 

case) and (b) PL=1%. 

 

 
(a) 

 
(b) 

 

 

Finally, in Figure 8 we reported the Cumulative Distribution Functions (CDFs) for a latency of 25 ms 
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in Figure 8a and a latency of 150 ms in Figure 8b. For all considered transport protocols the ideal 

transmission case (PL=0%) has a higher Throughput. This phenomenon is more evident in case of 

higher latency. In this case, LS-CUBIC has the best behavior with respect to the others, while TCP-

BBR and TCP-CUBIC experience a similar Throughput. Then, SCTP and QUIC (Aioquic) show the 

worst performance and this is due to the implemented congestion control algorithm. 

 

 

Figure 8. CDF of the throughput TH for transport protocols for ideal case (PL=0%, colored curves) 

and PL=1% (black curves): latency = 25 ms (a) and latency = 150 ms (b). 

 

 
(a) 

 
(b) 
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6.2 Application protocols 

 

In this section we consider and we analyze the performance of the two most popular application 

protocols and their secure versions: HTTP, HTTPS, FTP and FTPS. Performance results are reported 

in the following four subsections, respectively. Differently from the case of transport protocols in this 

case we considered as main performance parameter the download time. In the analysis, we evaluated 

the download of a webpage of a file with different sizes. The SSH File Transfer Protocol (SFTP), 

which adopts Secure Sockets Layer (SSL) as secure layer has been gradually replaced with the FTPS 

adopting TLS, which has been considered in Task 3.5 activities. In the following results have been 

obtained TLS v1.3. 

 

 

6.2.1 HTTP 

 

For simple HTTP we evaluated the performance of HTTP stacked over one of the following transport 

protocols: TCP-CUBIC, TCP-BBR and SCTP. For the moment, secure layer is not considered. For 

analysis purposes we have implemented the client application running on the on-board user terminal 

invoking the download of a webpage from a remote server. The downloading of a webpage involves 

the sequential download of several files including the reference web page (i.e., the first page download 

after the request e.g., the typical index.htm page) and all the files (images, text, javascript, etc.) which 

are indicated in the first downloaded page. Typically, one browser opens more simultaneous TCP 

connections to speed up the download. In our case we have preferred to consider only one TCP or 

QUIC connection at time so to have a clear picture of the application transport protocol performance 

in the case of a transmission channel where the available transmission capacity varies with time. In 

fact, we assume the user terminal is on-board moving from Rome to Florence in the mainline. The 

impairments of the wireless channel as seen at IP layer vary in accordance with the train mobility 

pattern (i.e., the train-speed vs time profile as indicated in Del. 3.4) and the radio cell coverage. 

 

For this analysis we considered two types of webpages: 

 

• The ETSI webpage – this is a test page issued by ETSI to test applications running over mobile 

devices;  

• The webpage of an (Italian) daily newspaper available on the Internet. 

In Figure 9 we indicate the Download Time (DT) required to download the two considered webpages. 

The DT depends on the channel latency ranging from 25 ms to 150 ms and increases with packet loss. 

The ideal case (i.e., the reference case) obtained for PL=0%, is reported in solid lines while the case 

corresponding to PL=1%, is indicated in dashed lines. In Figure 9a we show the DT of the ETSI page, 

while in Figure 9b it is reported the NEWSPAPER webpage. As expected for all transport protocols 

the DT increases as the channel latency increases and for higher packet loss. Moreover, the 

NEWSPAPER page experiences a higher DT with respect to the ETSI page due to larger amount of 

data to be transferred by the server to the user terminal. In both cases, TCP-CUBIC and TCP-BBR 

have very similar performance showing a DT ranging between 10 s and 50 s for the ETSI page and 

between 38 s and 2m15s for NEWSPAPER page. SCTP shows the worst performance, which further 

degrades with PL = 1%. 
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Figure 9. Average Download Time vs channel latency for PL=0% (ideal case) and PL=1%: (a) ETSI 

page; (b) NEWSPAPER page. 

 

 
(a) 

 
(b) 

 

 

In Figure 10 we reported the Download Time of the two webpages (ETSI in Figure 10a and 

NEWSPAPER in Figure 10b) as a function of packet loss. We also considered two values for the 

latencies i.e., 25 ms (colored lines) and 150 ms (black lines). Even in this case, TCP-CUBIC and 

TCP-BBR have similar performance and they do not show a significant degradation in case of the 

increase of the packet loss having a DT between 10 s and 15 s (for ETSI page) and between 38 s and 

52 s (for NEWSPAPER page) for low channel latency (i.e., 25 ms). In case of higher channel latency 

(i.e., 150 ms) they experience a higher DT but the degradation with the increase of packet loss is not 

so marked. Even in this case, SCTP shows the worst performance, which degrades sensitively from 

ideal case (PL=0%) to PL=5% passing from 1’13” to 1’53” (ETSI page) and from 3’22” to 5’48” 

(NEWSPAPER page). 
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Figure 10. Average Download Time vs packet loss for a channel latency = 25 ms (colored curves) 

and a channel latency = 150 ms (black curves): ETSI page (a), NEWSPAPER page (b). 

 

 
(a) 

 
(b) 

 

 

In Figure 11 and in Figure 12 we reported the CDF of the Download Time for TCP-CUBIC, TCP-

BBR and SCTP for the two webpages for low channel latency (i.e., 25 ms) and high channel latency 

(i.e., 150 ms), respectively. Moreover, we reported the ideal case (i.e., PL=0%, reported in colored 

lines) and PL=1%, reported in black lines. 

The CDF confirms the behavior of the average DT reported in Figure 9 and Figure 10 for the three 

transport protocols. CDFs give a higher sensitiveness to the performance for each measured DT. 

 

 

Figure 11. CDF of the download time for HTTP for latency = 25 ms and for ideal case (PL=0%, 

colored curves) and PL=1% (black curves): ETSI page (a) and NEWSPAPER page (b). 

 

 
(a) 

 
(b) 
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Figure 12. CDF of the download time for HTTP for latency = 150 ms and for ideal case (PL=0%, 

colored curves) and PL=1% (black curves): ETSI page (a) and NEWSPAPER page (b). 

 

 
(a) 

 
(b) 

 

 

6.2.2 HTTPS 

 

In this subsection we considered the transmission of two webpages (the ETSI and the NEWSPAPER 

pages), but in this case we used the HTTPS application protocol. Then, we considered the transport 

protocols implementing also the TLS for securing their data transmission between the server and the 

client: TCP-CUBIC, TCP-BBR, SCTP and LS-QUIC. 

 

In Figure 13 it is reported the Download Time (DT) required to download all the considered webpage. 

The DT is as a function of the channel latency ranging from 25 ms to 150 ms and for two packet 

losses: ideal case (i.e., PL=0%, reported in solid lines) and PL=1%, reported in dashed lines. In Figure 

13a it is reported the DT of the ETSI page, while in Figure 13b it is reported the NEWSPAPER 

webpage. Also in this case, as expected for all transport protocols the DT increases with the channel 

latency increases and with packet loss. Moreover, the NEWSPAPER page experiences a higher DT 

with respect to the ETSI page due to its larger amount of data to be transferred by the server to the 

user terminal.  

 

TCP-CUBIC and TCP-BBR have very similar performance. They do not show any big variation with 

respect to the non-secure cases in Figure 9a and in Figure 9b. With HTTPS for TCP-CUBIC and 

TCP-BBR the DT ranges between 15 s and 70 s for the ETSI page and between 46 s and 2 min. 45 s 

for NEWSPAPER page.  

 

Concerning the LS-CUBIC, it presents higher performance with respect to TCP (both CUBIC and 

BBR versions), more marked for a channel latency of 150 ms, showing in this case a value of 46 s 

(ETSI page) and 1 min 52 s (NEWSPAPER page). Moreover, its average DT is slightly affected by 

the packet loss. 
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Figure 13. Average Download Time vs channel latency for: (a) PL=0% (ideal case) and (b) PL=1%. 

 

 
(a) 

 
(b) 

 

 

In Figure 14 we reported the Download Time of the two webpages (ETSI in Figure 14a and 

NEWSPAPER in Figure 14b) as a function of the packet loss. We also considered two latencies: 

25 ms (colored lines) and 150 ms (black lines). All three application protocols give similar 

performance for low latency, even if LS-QUIC presents slightly variable performance when the 

downloaded page is reduced.  

 

In case of latency = 150 ms, LS-QUIC outperforms TCP-CUBIC and TCP-BBR experiencing a 

reduction of DT between 20 s and 30 s for the ETSI page and between 48 s and 110 s for the 

NEWSPAPER page. This fact can be explained by remembering that QUIC has been explicitly 

optimized by Google to speed up download of web-pages (i.e., the HTTP/3 has also been introduced 

with QUIC). To this purpose the QUIC considers UDP protocols to avoid TCP overhead and, most 

important, reduces the time required by the TLS to exchange the authentication information between 

client server. The reduction of this time is of importance especially in the case of communication 

links characterized by large latency.  

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view


 

 

 

 

 
[AB4Rail] GA [101014517] D [3.5]  

[Analysis of options for transport and application protocols and of their secure versions] 

40 | 79 

 

 

Figure 14. Average Download Time vs packet loss for a channel latency = 25 ms (colored curves) 

and a channel latency = 150 ms (black curves): ETSI page (a), NEWSPAPER page (b). 

 

 
(a) 

 
(b) 

 

 

In Figure 15 and in Figure 16 we have reported the CDF of the Download Time for TCP-CUBIC, 

TCP-BBR and LS-QUIC for the two webpages in low and high channel latency (i.e., 25 ms and 

150 ms), respectively. Moreover, we have reported the reference ideal case (i.e., PL=0%, in colored 

lines) and PL=1%, (black lines). 

 

For latency of 25 ms and for the newspaper webpage, LS-QUIC has similar performance of TCP-

CUBIC and TCP-BBR. In case of small web page (i.e., the ETSI page), LS-QUIC outperforms the 

other transport protocols in the ideal channel case, while for large latencies and PL=1% the LS-QUIC 

implementation may have some un-fair behavior which is related to the time interval of the probe 

used to estimate the RTT which is typically set to 200ms and, as in our case, it is lower than the true 

(average) RTT of 300ms (i.e., the average RTT is about two times the latency of 150ms). This fact 

has been observed experimentally in [10] and it is related to the implementation of BBR in the LS-

QUIC. Some modifications to LS-QUIC implementation are currently under study for solving this 

problem even considering an evolution of BBR congestion control. This implementation issue leads 

to a loss of performance of QUIC as shown in Figure 16 the DT is greater than about 3 s with respect 

to TCP-CUBIC and TCP-BBR. 
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Figure 15. CDF of the download time for HTTP for latency = 25 ms and for ideal case (PL=0%, 

colored curves) and PL=1% (black curves): ETSI page (a) and NEWSPAPER page (b). 

 

 
(a) 

 
(b) 

 

 

Figure 16. CDF of the download time for HTTP for latency = 150 ms and for ideal case (PL=0%, 

colored curves) and PL=1% (black curves): ETSI page (a) and NEWSPAPER page (b). 

 

 
(a) 

 
(b) 
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6.2.3 FTP 

 

In this subsection, we reported the Download Time required by a client in a train to download a file 

from a remote server. for this analysis we considered four files with different sizes of 0.5 Mbyte, 

1 Mbyte, 2 Mbyte and 4 Mbyte. We considered in this analysis only TCP-CUBIC and TCP-BBR, 

that are currently adopted for the FTP service.  

 

In Figure 17 it is reported the Download Time (DT) as a function of the channel latency ranging from 

25 ms to 150 ms and for two packet losses: ideal case (i.e., PL=0%, reported in solid lines) and 

PL=1%, reported in dashed lines. In Figure 17a it is reported the DT of the smallest file (i.e., 

500 kbyte), while in Figure 17b it is reported the biggest file (i.e., 4 Mbyte). Performance are similar 

and as expected for both transport protocols the DT increases as the channel latency increases and for 

higher packet loss. From Figure 17 we can also note that similar performance are obtained in ideal 

and with a channel with a packet loss of 1% in case of low channel latency (i.e., 25 ms). On the 

contrary the degradation from ideal to a lossy channel in case of latency of 150 ms, passing from 4 s 

to about 4.7 s for the small size file and from 17 s to about 30 s for a large size file. 

 

 

Figure 17. Average Download Time vs channel latency for PL=0% (ideal case, solid lines) and 

PL=1% (dashed lines): file size = 0.5 MBYTE (a); file size = 4 MBYTE (b). 

 

 
(a) 

 
(b) 

 

 

In Figure 18 we reported the Download Time of the two files (500 kbyte) in Figure 18a and 4 Mbyte 

in Figure 18b) as a function of the packet loss. We also considered two latencies: 25 ms (colored 

lines) and 150 ms (black lines). Also in this case, TCP-CUBIC and TCP-BBR have similar 

performance. They do not particularly degrade in case of the increase of the packet loss having a DT 

between 2.5 s and 3 s (for 0.5 Mbyte file) and between 17 s and 27 s (for 4 Mbyte file) for low channel 

latency (i.e., 25 ms). In case of higher channel latency (i.e., 150 ms) they experience a higher DT. 
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Figure 18. Average Download Time vs packet loss for a channel latency = 25 ms (colored curves) 

and a channel latency = 150 ms (black curves): file size = 0.5 MBYTE (a);  

file size = 4 MBYTE (b). 

 

 
(a) 

 
(b) 

 

 

In Figure 19 we reported the Download Time as a function of the file size for latency = 25 ms (Figure 

19a) and latency = 150 ms (Figure 19b), for two packet losses: ideal case (i.e., PL=0%, reported in 

solid lines) and PL=1% (lossy channel), reported in dashed lines. TCP-CUBIC and TCP-BBR have 

similar performance. As expected, the DT increases as the file size increases. However, for latency = 

25 ms ideal and lossy channel show the same behavior slightly depending on the file size. In case of 

latency = 150 ms, the degradation from an ideal to a lossy channel increase as the file size increases 

passing from DT = 17 s to DT = 30 s for 4 Mbyte. 

 

 

Figure 19. Average Download Time vs file size for PL=0% (ideal case, solid lines) and PL=1% 

(dashed lines): channel latency of 25 ms (a) and channel latency of 150 ms (b). 

 

 
(a) 

 
(b) 
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In Figure 20 and in Figure 21, we reported the CDF of the Download Time for TCP-CUBIC and 

TCP-BBR for the file of 500 kbyte (Figure 20a and Figure 21a) and the file of 4 Mbyte (Figure 20b 

and Figure 21b) for low channel latency (i.e., 25 ms) and high channel latency (i.e., 150 ms), 

respectively. Moreover, we reported the ideal case (i.e., PL=0%, reported in colored lines) and 

PL=1%, reported in black lines. 

Higher Download Time are obtained in case of latency 150 ms lossy channel (PL = 1%) with respect 

to an ideal channel (PL = 0%). 

 

 

Figure 20. CDF of the download time for FTP for latency = 25 ms and for ideal case (PL=0%, 

colored curves) and PL=1% (black curves): file size = 0.5 MBYTE (a); file size = 4 MBYTE (b). 

 

 
(a) 

 
(b) 

 

 

Figure 21. CDF of the download time for FTP for latency = 150 ms and for ideal case (PL=0%, 

colored curves) and PL=1% (black curves): file size = 0.5 MBYTE (a); file size = 4 MBYTE (b). 

 

 
(a) 

 
(b) 
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6.2.4 FTPS 

In this subsection, we reported the Download Time required by a client in a train to download a file 

from a remote server using the FTPS application protocol. For this analysis we considered four files 

with different sizes of 0.5 Mbyte, 1 Mbyte, 2 Mbyte and 4 Mbyte. We considered in this analysis only 

TCP-CUBIC and TCP-BBR. To the best of authors’ knowledge, at the moment of this writing there 

are no software implementations of FTP over QUIC nor it is envisaged to use QUIC for FTP 

transmissions. However, performance of FTP over QUIC should be not so different from the 

performance achieved considering TCP with BBR and TLS for transferring large files (see next). In 

fact, as shown in Figures 6-8 LS-QUIC and TCP with BBR almost achieve similar performance. In 

addition, it should be remarked that the main objective of the FTP layer, being an application protocol, 

is to implement additional functionalities allowing the application above the FTP to better manage 

the file transfer i.e., control of errors during the file transfer, the possibility of resuming transfer 

starting from the last byte that has been correctly received etc. Apart of the overhead introduced by 

the FTP layer, the transmission of files as well as the achievable throughput/file transfer rate is 

regulated by the operations of the underlying transport protocol.  

 

In Figure 22 it is reported the Download Time (DT) as a function of the channel latency ranging from 

25 ms to 150 ms and for two packet losses: ideal case (i.e., PL=0%, reported in solid lines) and 

PL=1%, reported in dashed lines. In Figure 22a it is reported the DT of the smallest file (i.e., 

500 kbyte), while in Figure 22b it is reported the biggest file (i.e., 4 Mbyte). Performance of the two 

TCP versions are similar and as expected for both transport protocols the DT increases as the channel 

latency increases and for higher packet loss. From Figure 22 we can also note that similar performance 

are obtained in ideal and with a channel with a packet loss of 1% in case of low channel latency (i.e., 

25 ms). On the contrary the degradation from ideal to a lossy channel in case of latency of 150 ms, 

passing from 4 s to about 4.7 s for the small size file and from 17 s to about 30 s for a large size file. 

 

Comparing them with the classical FTP application transfer protocol, it is noted a small increase of 

the DT due to the TLS overhead inserted in the packets of the secured FTP version and the additional 

time required for initial TLS handshaking that can be more marked with the increase of channel 

latency. However, in the case of large file transfer this additional time can be negligible with respect 

to the overall time required for the file download. As an example, the DT increases from 3.9 s to 4.6 s 

for latency = 150 ms, lossless channel and file size = 500 kbyte. 
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Figure 22. Average Download Time vs channel latency for PL=0% (ideal case, solid lines) and 

PL=1% (dashed lines): file size = 0.5 MBYTE (a); file size = 4 MBYTE (b). 

 

 
(a) 

 
(b) 

 

 

In Figure 23 we reported the Download Time of the two files (500 kbyte in Figure 23a and 4 Mbyte 

in Figure 23b) as a function of the packet loss. We also considered two latencies: 25 ms (colored 

lines) and 150 ms (black lines). Also in this case, TCP-CUBIC and TCP-BBR have similar 

performance. Considerations for this behavior are similar to those concerning the classical FTP case.  

 

 

Figure 23. Average Download Time vs packet loss for a channel latency = 25 ms (colored curves) 

and a channel latency = 150 ms (black curves): file size = 0.5 MBYTE (a);  

file size = 4 MBYTE (b). 

 

 
(a) 

 
(b) 

 

 

In Figure 24 we reported the Download Time as a function of the file size for latency = 25 ms (Figure 

24a) and latency = 150 ms (Figure 24b), for two packet losses: ideal case (i.e., PL=0%, reported in 

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view


 

 

 

 

 
[AB4Rail] GA [101014517] D [3.5]  

[Analysis of options for transport and application protocols and of their secure versions] 

47 | 79 

 

solid lines) and PL=1% (lossy channel), reported in dashed lines. TCP-CUBIC and TCP-BBR have 

similar performance. As expected, the DT increases as the file size increases. However, for latency = 

25 ms ideal and lossy channel show the same behavior slightly depending on the file size. In case of 

latency = 150 ms, the degradation from an ideal to a lossy channel increases as the file size increases 

passing from DT = 17 s to DT = 30 s for 4 Mbyte. 

FTPS slightly has worsen performance with respect to FTP above all for file size = 4 Mbyte, for 

latency = 150 ms and PL=1% passing from 30 s (Figure 19b) to 32 s (Figure 24b). 

 

 

Figure 24. Average Download Time vs file size for PL=0% (ideal case, solid lines) and PL=1% 

(dashed lines): channel latency of 25 ms (a) and channel latency of 150 ms (b). 

 

 
(a) 

 
(b) 

 

 

In Figure 25 and in Figure 26, we reported the CDF of the Download Time of FTPS for TCP-CUBIC 

and TCP-BBR for the file of 500 kBYTE (Figure 25a and Figure 26a) and the file of 4 MBYTE 

(Figure 25b and Figure 26b) for low channel latency (i.e., 25 ms) and high channel latency (i.e., 

150 ms), respectively. Moreover, we reported the ideal case (i.e., PL=0%, reported in colored lines) 

and PL=1%, reported in black lines. Higher DTs are obtained in case of latency 150 ms lossy channel 

(PL = 1%) with respect to an ideal channel (PL = 0%). 

 

TCP-CUBIC and TCP-BBR show similar performance. Anyway, also in this case FTPS has a small 

degradation with respect to classical FTP mainly due to additional TLS overhead. As an example, we 

can refer to the starting point of Figure 26a for FTPS, which is equal to 3.5 s, and it is 0.5s higher 

than the starting point of the corresponding FTP case (see Figure 21a), which starts at 3 s. 
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Figure 25. CDF of the download time for FTP for latency = 25 ms and for ideal case (PL=0%, 

colored curves) and PL=1% (black curves): file size = 0.5 MBYTE (a); file size = 4 MBYTE (b). 

 

 
(a) 

 
(b) 

 

 

Figure 26. CDF of the download time for FTP for latency = 150 ms and for ideal case (PL=0%, 

colored curves) and PL=1% (black curves): file size = 0.5 MBYTE (a); file size = 4 MBYTE (b). 

 

 
(a) 

 
(b) 
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6.3 Periodic Short Messages Delivery 

In this section we analyze the performance of the considered transport protocols in the case of delivery 

of periodic short messages. This study case is of great importance since it can be associated to the 

class of ACS services concerning signaling using short messages as in the ETRMS/ETCS case or 

SIP/SDP. We considered two lengths of the messages to be sent: 1 kbyte and 10 kbyte. The following 

secure versions of transport protocols are considered: TCP-CUBIC, TCP-BBR, SCTP, QUIC with 

Aioquic and LS-QUIC implementations. 

 

The emulator developed in Task 3.3. is used for performance assessment (see Figure 1). We assume 

the transmitting application is on board and transmit periodic (short) messages to a remote server. 

One new message is transmitted every 3 seconds. The connection from the terminal to the server is 

opened before starting transmission and closed when message transmission ends. To evaluate 

performance we have considered two different message delays: the first delay includes the time 

interval required for the initial TLS handshake carried out before message transmission and the time 

interval between the transmission and reception of the message after the TLS handshake is completed. 

Obviously, by definition the first time interval is the sum of the TLS handshake time and that required 

for message reception. This second time interval is of importance to assess the performance of 

message transmission when non-secure version of the transport protocols are used since in this case 

TLS handshake is not present.  

 

6.3.1 Message Delay including TLS handshaking time 

 

In Figure 27 it is reported the average Message Delay (MD) required to send the short messages. As 

expected, the overall MD is as a function of the channel latency ranging from 25 ms to 150 ms. We 

have analyzed MD ecven considering packet loss: ideal case (i.e., PL=0%, reported in solid lines) and 

PL=1%, reported in dashed lines. In Figure 27a it is reported the MD of the message of 1 kbyte, while 

in Figure 27b it is reported the message of 10 kbyte. As expected for all transport protocols the MD 

increases as the channel latency increases as well as the packet loss increases. Obviously, the message 

with a greater size takes a larger delay. QUIC outperforms all the other transport protocols for small-

size files and for 10 kbyte-size in case of low latencies (lower than 60 ms), while it has an MD great 

then both versions of the TCP for latency = 150 ms. TCP-CUBIC and TCP-BBR have very similar 

performance showing a MD ranging between 150 ms and 800 ms for 1 kbyte-file size and between 

185 ms and 830 ms for 10 kbyte-file size for a lossless channel. SCTP shows the worst performance, 

which further deteriorates for PL = 1%. For QUIC and TCPs performance do not degrade significantly 

for the lossy channel with respect to the lossless channel. 
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Figure 27. Average Message Delay vs channel latency for PL=0% (ideal case) and PL=1%: 

(a) 1 kbyte-file size; (b) 10 kbyte-file size. 

 

 
(a) 

 
(b) 

 

In Figure 28 we reported the average Message Delay of the two files (1 kbyte-file size in Figure 28a 

and 10 kbyte-file size in Figure 28b) as a function of the packet loss. We also considered two 

latencies: 25 ms (colored lines) and 150 ms (black lines). TCP-CUBIC, TCP-BBR and QUIC have 

similar performance for latency = 25 ms and they do not particularly degrade in case of the increase 

of the packet loss having a MD between 140 ms and 220 ms (for 1 kbyte-file size) and between 

175 ms and 230 ms (for 10 kbyte-file size). In case of higher channel latency (i.e., 150 ms), QUIC 

has a better behavior with respect to TCP-CUBIC and TCP-BBR for 1-kbyte file, while it experiences 

a higher MD for 10-kbyte file. 

Also in this case, SCTP shows the worst performance, which degrades sensitively from ideal case 

(PL=0%) to PL=5% passing from 195 ms to 850 ms (1 kbyte-file size) and from 300 ms to 970 ms 

(10 kbyte-file size) for latency = 25 ms. 

 

Figure 28. Average Message Delay vs packet loss for a channel latency = 25 ms (colored curves) 

and a channel latency = 150 ms (black curves): (a) 1 kbyte-file size; (b) 10 kbyte-file size. 

 

 
(a) 

 
(b) 
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In Figure 29 and in Figure 30 we have reported the CDF of the Message Delay for TCP-CUBIC, 

TCP-BBR, SCTP and QUIC of the two file sizes (1 kbyte and 10 kbyte) for low channel latency (i.e., 

25 ms) and high channel latency (i.e., 150 ms), respectively. Moreover, we reported the ideal case 

(i.e., PL=0%, reported in colored lines) and PL=1%, reported in black lines. 

The CDF confirms the behavior of the average MD reported above for the three transport protocols. 

CDFs give a higher sensitiveness to the performance for each measured MD. In fact, it is possible to 

note that the MD for TPC-CUBIC and TCP-BBR ranges close to latency = 25 ms (Figure 29a) and 

latency = 150 ms (Figure 30a) for 1 kbye case. The packet loss hardly affects their performance due 

to the small size of the sent messages. MD increases as the file size increases (see Figure 29b and 

Figure 30b). 

 

 

Figure 29. CDF of the Message Delay of Message delivery service for latency = 25 ms and for ideal 

case (PL=0%, colored curves) and PL=1% (black curves):  

(a) 1 kbyte-file size; (b) 10 kbyte-file size. 

 

 
(a) 

 
(b) 
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Figure 30. CDF of the Message Delay of Message delivery service for latency = 150 ms and for 

ideal case (PL=0%, colored curves) and PL=1% (black curves):  

(a) 1 kbyte-file size; (b) 10 kbyte-file size. 

 

 
(a) 

 
(b) 

 

 

For the LS-QUIC case we can observe a bi-modal behavior of the protocol in the case of delay of 

150ms and large messages that can lead to a degradation of QUIC performance i.e., an increase of 

MD with respect to TCP-BBR with TLS for a percentage of packets. This behavior is not easy to 

explain but we should remember that LS-QUIC is set by default to send an RTT probe every 200ms 

which is lower than the RTT of about 300ms. Instead, the TCP-BBR send one probe every 8 RTT 

(typically). This leads to enqueuing remaining packets to be transmitted packets due to the delay in 

remining in the draining phase of BBR (i.e., in the drain status the packet transmission is stopped and 

it can restart only after we have received the ACK of the transmitted packets). This can explain the 

bimodal behavior of LS-QUIC shown in Figure 30. The un-fair behavior of BBR has been studied in 

[10]. 
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6.3.2 Message Delay without the TLS negotiation time 

In this Section we provide results concerning the MD without including the time interval required for 

initial TLS handshaking. As previously outlined, these results can be representative of performance 

non-secure protocols even though the results do not include the delay due to protocol initial 

synchronization phase. In this case, only results for TCP with BBR and Cubic and SCTP are reported. 

In fact, it makes no sense to strip the TLS layer from QUIC.  

 

 

Figure 31. CDF of the Message Delay of Message delivery service for latency = 25 ms and for ideal 

case (PL=0%, colored curves) and PL=1% (black curves):  

(a) 1 kbyte-file size; (b) 10 kbyte-file size. 

 

 
(a) 

 
(b) 

 

 

Figure 32. CDF of the Message Delay of Message delivery service for latency = 150 ms and for 

ideal case (PL=0%, colored curves) and PL=1% (black curves):  

(a) 1 kbyte-file size; (b) 10 kbyte-file size. 

 

 
(a) 

 
(b) 
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As shown in Figure 31 and Figure 32 the absence of TLS handshaking allows to drastically reduce 

the MD. In Figure 31 corresponding to latency of 25 ms the minimum MD is 20 ms. This is not a 

surprise since it should be remined that latency in the emulator is randomly generated at each iteration 

in accordance with a uniform distribution around its mean of 25ms+5ms. Similar considerations apply 

to the results indicated in Figure 32 corresponding to different mean latency of 150 ms. 

In case of messages of 1 kbyte, TCP-BBR, TCP Cubic and SCTP show similar performance, 

independently of the channel latency, while in case of messages of 10 kbyte SCTP degrades with 

respect to both versions of the TCP. 

 

 

6.3.3 Comparison of message delay with and without TLS handshake 

 

In this section we compare the achievable MD for short message transmission in the absence or 

presence of TLS negotiation. For brevity, only the CDFs of MD are reported. 

 

In Figure 33a and Figure 33b we reported the CDF of the Message Delay for TCP-CUBIC, TCP-

BBR, SCTP, QUIC and LS-QUIC for low channel latency (i.e., 25 ms), and for the file size of 1 kbyte, 

and the file size of 10 kbyte, respectively. Moreover, we reported the CDF of MD, which includes 

the TLS setup time for each message (black lines) and the simplified case, where TLS has not been 

included in the setup reported in colored lines. It is evident the increased delay due to the TLS setup. 

Note that in case of non-secure transmission (no TLS setup) and for the file size of 1 kbyte, delays 

are similar to the channel latency and similar for all transport protocols due to the reduced size of the 

file. In case of the file size of 10 kbyte, SCTP without TLS (triangle cyan in Figure 33b) degrades. 

 

 

Figure 33. CDF of the Message Delay of Message delivery service for latency = 25 ms and for ideal 

case (PL=0%), colored curves) and PL=1% (black curves):  

(a) 1 kbyte-file size; (b) 10 kbyte-file size. 

 

 
(a) 

 
(b) 
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Similar considerations can be noted in case of for latency = 150 ms, whose results are reported in 

Figure 35 (Figure 35a for 1 kbyte and Figure 35b for 1 kbyte). 

 

 

Figure 34. CDF of the Message Delay of Message delivery service for latency = 150 ms and for 

ideal case (PL=0%, colored curves) and PL=1% (black curves):  

(a) 1 kbyte-file size; (b) 10 kbyte-file size. 

 

 
(a) 

 
(b) 
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7. Analysis of security threats and possible defense techniques 
 

 

In this section we analyze the security aspects of the considered transport and application protocols 

especially when message transmission is considered.  The security aspects of the RASTA protocol 

have been analyzed in the D3.4 taking results from the available literature. In this Section we are 

focusing on TCP, UDP, SCTP even with TLS and QUIC. Usage of transport protocols adopting TLS 

allow the application protocols, HTTP and FTP, to transmit data from the source to the destination in 

a secure way. 

 

 

 

7.1 Most common threats and countermeasures envisaged in message transmissions 

 

The most common threats to be considered in the case of rail applications are reported in the following 

list, (from [3]): 

 

• Repetition. 

o The attack is performed by storing a packet by the attacker, who transmit it subsequently, thus 

giving to the application wrong information (e.g., not updated train position), maybe in different 

situation, for example, injecting a message collected when the train is at 250 km/h and replaying 

it when the train is at 40 km/h or vice versa; 

 

• Deletion.  

o The attacker intercepts a packet and deletes it, leaving the destination without the information 

inserted in the packet, for example cancelling the message “immediately stop”; 

 

• Insertion.  

o The attacker inserts a message thus providing to the train wrong information, for example allowing 

its speed to be 250 km/h in rail slots where it is not safe; 

 

• Re-sequencing.  

o The attacker intentionally (or a hardware failure unintentionally) modifies the order of the 

messages, thus for example changing the meaning of the information sent by the train to the 

remote-control center or vice versa; 

 

• Corruption.  

o The message has been modified intentionally or unintentionally, providing the recipient with 

wrong information such as speed at 250 km/h is available in the part of the rail; 

 

• Delay.  

o Messages are delayed above the maximum allowed delay causing for example train stop due to 

missing movement authorization. In this case, the attacker injects a large number of messages 

delaying or stopping the service. This can happen also by an overload of the network not able to 

dispose all packets. 
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• Masquerade.  

o An attacker pretends to be an allowed sender or receiver getting access to safety data. 

Note that some attacks such as repetition, deletion and corruption can occur also due a hardware 

failure. 

 

The most common countermeasures to be considered in the case of rail applications are reported in 

the following list, (from [3]): 

 
 

• Sequence number of packets 

o It is a number added to each packet or message inserted by the source and incremented at each 

sent message. Of course, transmitter and recipient should agree the first sequence number, the 

allowed interval and the incrementation mode. 

 

• Time stamp 

o Similarly to the previous field, the value of the time has been added to the message header, 

allowing the recipient to know the timeliness of the received message. Sometimes, only the last 

significant values of the local clock can be inserted in the message due to the narrowness of the 

available bits. This information can be exploit jointly with the sequence number or alone. 

Nevertheless, it may be difficult to manage since the clocks in the elements of the network may 

significantly differ reducing its effectiveness. 

 

• Time out 

o It is defined as the maximum amount of time within two consecutive messages whose exceeding 

an error should be assumed in the communication between transmitter and recipient. There are 

two main cases. In the first one, the interval between two consecutive messages is measured at the 

recipient. Then, if it exceeds the agreed threshold the communication is considered with error. In 

the second case, the source transmits a message and it waits for its acknowledgment. In case, it 

arrives exceeding the maximum agreed time interval (thus exceeding the threshold) the 

communication is considered in timeout and should be resumed. 

 

• Source and destination identifiers 

o The header of the message can be provided by the identification of the transmitter or of the 

recipient or both in order to be sure to provide the message content to correct (and safety) machine 

process. 

 

• Feedback message 

o The use of feedback messages such as acknowledgements or messages for handshakes during 

initial phase sent by the recipient to the transmitter may improve the safety process or simply 

providing a confirmation to have correctly received a message. The missing of this type of 

messages can enable the transmitter to take proper actions or countermeasures. 

 

• Identification procedure 

o It means defining (or having) a procedure that allows to know that whoever you are 

communicating with is actually who you claim to be; the procedure can concern the 

sender/recipient identifiers or provide also that the behavior is that it is expected.  
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• Safety code 

o Due to transmission errors, a safety code under the control of the safety-related process is required 

additionally to detect message corruption (i.e., its integrity), caused by air interface of by hardware 

failure or other external influences. 

 

• Cryptographic techniques 

o The adoption of cryptographic codes can be used to provide confidentiality or integrity or both. 

 

Starting from the above classification of the main threats in a rail environment in [3] it is clearly 

outlined that a number of mechanisms should be implemented in the transmission protocol in order 

to counter-act the previous threats. One protocol can implement one or more of these mechanisms 

that are listed in the following list. 

 

 

In [3] a specific matrix related to the techniques to provide defenses against the threats envisaged is 

reproduced and reported in Table 4. 

 

 

Table 4: Matrix to report defending technique (in blue) to counteract the security threats (in red) [3]. 

 
 Defenses 

Threats Sequence 

number 

Time 

stamp 

Time-

out 

Source 

and 

destination 

identifiers 

Feedback 

message 

Identification 

procedure 

Safety 

code 

Cryptography 

techniques 

Repetition X X       

Deletion X        

Insertion X   X X X   

Re-

sequencing 

X X       

Corruption       X X 

Delay  X X      

Masquerade     X X  X 

 

 

7.2 Analysis of transport protocols to counteract the security threats 

 

Starting from the indications reported in previous Section, in the following we analyze the considered 

transport and application protocols from the security point of view. In particular, by extending the 

concepts in [3] we evaluate if the considered transport protocols can counteract one, more or all of 

the security threats indicated in Table 4. The considered transport protocols are: TCP, SCTP with and 

without TLS, the UDP or better its “QUIC” version.  

 

The analysis of the security aspects of the considered protocols start with a short review of the main 

features of the considered protocols. In particular, we analyze the fields inside their header and we 

summarize the procedures that are important from the point of view of security. Our main findings 

are then summarized in a final Table.  
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TCP – short analysis 

Before starting with the TCP analysis, it should be noted that for security purposes the selection of 

congestion control algorithm is not important. Thus, the following discussion includes both TCP-

BBR and TCP-cubic version, as the header format is the same. 

 

Based on the header format in RFC 793 [11], RFC 5681 [12], RFC 8312 [13], TCP has the following 

fields: 

 
a. sequence number,  

b. acknowledgment number,  

c. source and destination ports (for the identification of the communicating processes), 

d. checkSum field.  

 

The CheckSum of the TCP is calculated by taking into account for the content of the TCP Header, 

the TCP body and Pseudo IP header. In order to avoid any possible crosslayer (i.e., use at TCP layer 

of data only available at IP layer) the fields of the Pseudo IP header (12 bytes) are the IP address of 

the source (4 bytes), the IP address of the destination (4 bytes), the TCP segment length (2 bytes), the 

transport protocol (stating the type of the protocol used, thus TCP in this case) (1 byte) and a fixed 

field of 1 byte. This allows the TCP to avoid any mis-addressing of the segments. Similarly, the 

Checksum is even calculated for UDP. 

 

 

TLS secure layer – short recap 

 

As specified in RFC 5246 [14] and RFC 8446 [15], TLS is a protocol layer aiming of providing a 

secure channel between two communicating peers. TLS provides:  

 
1. authentication,  

2. confidentiality and  

3. integrity  

This is achieved through two main components: the handshake protocol and the record protocol. The 

only requirement from the underlying (non-secure) transport protocol is a reliable, in-order data 

stream delivery. It means that TLS can be applied above the TCP and SCTP but not above the UDP. 

Moreover, it is integrated by default on the QUIC protocol to provide these functionalities to UDP 

transport layer. 

 

The handshake protocol is used to authenticate the communicating entities, to negotiate cryptographic 

modes and parameters, and to establish shared keying material. After parameters and keys have been 

agreed through the handshake protocol, the record protocol protects the exchanged traffic between 

the two communicating entities. Two 64-bit sequence numbers are used for each record sent or 

received and incremented by one periodically. The client is able to know the identity of the server 

whom is connecting to and authenticate it, through the TLS handshake. Optionally, the server can 

know and authenticate the client identity. 
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In order to simplify the handshake procedure, TLS defined two versions: 0-RTT and 1-RTT. The 

second one is the handshake adopted for the first time. Then, the client is unable to send protected 

application data until it has agreed all parameters and keying materials sent by the server. 0-RTT is 

used for a session resume, where some parameters can be retrieved by the previous connection, such 

as the last used key. Anyway, in this case (i.e., with 0-RTT handshake) a simpler replay attack can be 

applied. Finally, as described in RFC6962 [16] [17], a set of extension values for the CertificateEntry 

can be defined in the “extension” format, thus for example providing a mechanism for a server to 

send a Signed Certificate Timestamp (SCT). In TLS, certificates may expire or may be no longer 

valid. 

 

 

SCTP protocol 

 

Based on RFC 3286 [18], RFC 4960 [19], RFC 9260 [20] the SCTP implements the following 

functionalities.  

 
a. The multi-streaming function provided by SCTP allows to partition data into multiple streams. Each 

payload DATA namely “chunk” uses a Transmission Sequence Number for the transmission of 

messages and the detection of message loss. In addition, it uses the Stream ID/Stream Sequence 

Number pair to determine the sequence of delivery of received data. 

b. The received SCTP data “chunks” are acknowledged according to the TCP's Selective ACK procedure, 

in order to provide notification of duplicated or missing data chunks. 

SCTP implements the flow control and the congestion control based on the TCP functionalities in 

RFC 2581 and RFC 5681 [21], [22]. Nevertheless, the application can specify a lifetime for data to 

be transmitted in order to properly manage messages that are time-sensitive. Then, the lifetime has 

expired and the data has not yet been transmitted, it can be discarded for timeout. 

 

According to RFC 9260 [20] the SCTP format includes the following fields:  

 

• Source and Destination Port Numbers (2 bytes, each), that are used by the receiver in combination 

with the source/destination IP addresses to identify the association to which this packet belongs and 

to properly forward the packet to the correct application.  

• Verification Tag (4 bytes), that is used by the receiver to validate the sender of this packet. 

• 32-bit checksum based on Cyclic Redundancy Check (CRC) for protecting SCTP packets against bit 

errors and mis-delivery of packets. 

Finally, the STCP employs one mechanism to improve security, with respect to TCP and UDP. It is 

based on cookies exchanged during the initialization to provide protection against synchronization 

attacks. The synchronization attack is implemented in the connection establishment phase. An 

attacker sends a massive number of SYN requests to a server in order to establish connections, often 

using fake IP addresses. The server responds to the requests with a SYN-ACK message and by 

assigning a port for the connection. Since the client IP are fakes, the third message in the establishing 

phase is not received, blocking after a bit the server. In SCTP this is overcome by enabling the server 

to send a cookie (INIT-ACK) in response to the connection establishment request (INIT message). 
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The cookie is a text file with small blocks of data, containing a hashing (i.e., a Message Authentication 

Code, MAC) and other information to establish the connection such as a time stamp and the life span 

of the state cookie. In this case the server does not allocate any resource (e.g., port, memory) since it 

receives a valid answer to the INIT-ACK, namely COOKIE ECHO, containing the requested 

information in the cookie parameters from the previous INIT ACK. Then, the resource allocation is 

delayed during association setup until the client's identity can be verified using a cookie exchange 

mechanism, thus reducing also the possibility of Denial-of-Service attacks. 

 

 

UDP protocol 

 

As specified in RFC 768 [23], UDP is very simple transport protocol. Its header format is very simple 

and provides the following functionalities: 

 

• Source and destination ports to identify the source and recipient applications, respectively, 

• The length of the datagram, including header and payload 

• The CheckSum, which implements the same TCP functionalities thus providing mis-delivery of 

datagrams. 

 

For these reasons, UDP is not considered alone for the purpose of the document but only jointly with 

QUIC, where extra (and important) functionalities are added. 

 

 

QUIC protocol 

 

The QUIC protocol is described in RFC 9000 [7], RFC 9001 [8], RFC 9002 [24]. QUIC established 

a connection between a client and server through a handshake that negotiates the TSL parameters, 

thus guaranteeing authentication, confidentiality and integrity. When the handshake is properly 

performed, a connection is established (and a connection ID is available). Data are exchanged using 

several ordered byte-based streams. Application data are segmented into frames and multiplied in a 

single or more than one parallel streams, each one identified by a stream ID. Transmitted packets 

have a flexible structure and can aggregate frames belonging to different streams reducing the head-

line-of-blocking. An example of the packet organization is reported in Figure 35. 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view


 

 

 

 

 
[AB4Rail] GA [101014517] D [3.5]  

[Analysis of options for transport and application protocols and of their secure versions] 

62 | 79 

 

Figure 35: Principle of the header format of QUIC taken from [7], [25] 

 

 
 

QUIC adopts UDP as transport protocol and as said before it adopts the TLS to provide a secure 

connection between endpoints. In Figure 36 it is reported the encapsulation of the QUIC packet, 

which is formed by a header and some frames, into the UDP segment. 

 

Figure 36: Example of encapsulation of QUIC packet into an UDP payload [26]. 

 

 
 

 

From Figure 35 and Figure 36, QUIC packet is equipped with the sequence number to provide 

retransmission and so to guarantee reliability. Each endpoint acknowledges all the packets it receives 

and processes. When a connection is established, endpoints agree the value of the parameter 

max_idle_timeout. When it is reached, the connection is closed for timing out. 

 

During the connection establishment, the address validation for both endpoints is also guaranteed 

since receipt of a packet protected with agreed keys confirms that the client received the Initial packet 

from the server.   
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7.3 Summary and findings for security in transport protocols 

 

In the following table we summarize the main results that have emerged by the security analysis of 

the transport protocols illustrated in the previous Section. For each one of the considered protocols 

we have indicated their ability to support the countermeasures required to counteract one, more or all 

of the security threats listed in the previous Section. 

 

 

Table 5: secure functionalities supported by transport protocols to counteract the security threats. 

 
 TCP TCP+TLS SCTP SCTP+TLS UDP QUIC 

Sequence 

number 

Yes Yes Yes  No Yes 

Time stamp No [RFC6962] 

provides a 

mechanism for a 

server to send a 

Signed Certificate 

Timestamp (SCT) 

No [RFC6962] 

provides a 

mechanism for a 

server to send a 

Signed Certificate 

Timestamp (SCT) 

No No 

Time out Yes Both TCP 

connection and 

TLS certificates 

may expire 

Yes Both SCTP 

connection and TLS 

certificates may 

expire 

No Yes, after 

max_idle_timeo

ut the QUIC 

connection is 

silenced 

Source and 

destination 

identifiers 

Yes It uses the ID 

ports of the TCP 

Yes It uses the ID ports 

of the SCTP 

Yes Yes, it uses 

tuple of IP 

version, IP 

address and 

UDP port 

number that 

represents one 

end of a 

network path. 

Feedback 

message 

Yes, ACKs 

are required 

Yes, TLS uses 

feedback 

messages of TCP 

Yes Yes, TLS uses 

feedback messages 

of SCTP 

No Yes, endpoints 

acknowledge all 

packets they 

receive and 

process. 

Identificatio

n procedure 

No Yes, by providing 

authentication. 

After completing 

the TLS 

handshake, the 

client will have 

learned and 

authenticated an 

identity for the 

server, and the 

server is 

optionally able to 

learn and 

authenticate an 

identity for the 

No, but 

further 

protection 

mechanism

s are 

implement

ed during 

the 

initializatio

n phase. 

Yes, by providing 

authentication. 

After completing 

the TLS handshake, 

the client will have 

learned and 

authenticated an 

identity for the 

server, and the 

server is optionally 

able to learn and 

authenticate an 

identity for the 

client 

No It uses TLS 

functionalities. 

Moreover, 

address 

validation for 

both endpoints 

during the 

handshake 

phase. 
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client 

Safety code Only on 

CheckSum 

field 

TLS uses the 

CheckSum of 

TCP 

Validation 

tag and 4-

bytes 

checksum 

 Only 

on 

CheckS

um 

field 

It uses the 

CheckSum field 

of UDP 

Cryptogra-

phic 

techniques 

No 

cryptograph

y technique 

is 

implemented

. 

Nevertheless

, sequence 

number 

randomizatio

n may 

prevent IP 

spoofing 

Yes,  

ciphering and 

integrity based on 

MAC 

No   Yes, packets 

have 

confidentiality 

and integrity 

protection. 

Moreover, it 

verifies the 

identity using 

cookies 

exchange during 

association 

setup, reducing 

the possibility 

of DoS, MitM, 

masquerade 

 

 

In some cases, the motivations justifying the assertion have been inserted in the Table 5.  

 

Before concluding this section, it is noteworthy to observe that more than one event can generate the 

same threat. In the following Table 6 (which has been taken and copied from [3]) the hazardous events 

are related to the generated threat indicated in Table 4. 
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Table 6: Relationship between hazardous events and threats (Table A.1 in [3]) 

 

 
Hazardous 

Events 

Threats 

Repetition Deletion  Insertion Re-

sequencing 

Corruption Delay Masquerade 

HW systematic 

failure 

X X X X X X  

SW systematic 

failure  

X X X X X X  

Cross-talk  X X  X   

Wires breaking  X   X X  

Antenna 

misalignment 

 X   X   

Cabling errors  X X  X X  

HW random 

failures 

X X X X X X  

HW ageing X X X X X X  

Use of 

uncalibrated 

instruments 

X X X X X X  

Use of 

unsuitable 

instruments 

X X X X X X  

Incorrect HW 

replacement 

X X X X X X  

Fading effects  X   X  X  X  

EMI  X    X    

Human 

mistakes 

X  X  X  X  X  X  

Thermal noise  X    X    

Magnetic storm  X    X X  

Fire  X    X X  

Earthquake  X   X X  

Lightning  X   X X  

Overloading of 

TX system 

 X    X  

Wire tapping X X X X X X  

HW damage or 

breaking 

 X    X  X  

Unauthorized 

SW 

modifications 

(a) 

X X X X X X X* 

Transmission of 

unauthorized 

messages (a) 

X  X    X* 

* In this case the message is fraudulent from the beginning; a strong defense is needed, for example the use of a 

key. 

 

 

Starting from Table 6 it is possible to evaluate the robustness of the considered transport protocols to 
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the security threats. In particular, in Table 7 we have indicated whether one transport protocol 

implements countermeasure able to counteract the effect of each one of the threats (in the row in 

Table 7). As an example, the TCP has a sequence number in its header format (but not a timestamp) 

thus guaranteeing robustness against the repetition threat.  

 

 

Table 7: Implemented countermeasures by transport protocols 

 
Threats TCP TCP+TLS SCTP SCTP+TLS UDP QUIC 

Repetition X X X X  X 
Deletion X X X X  X 
Insertion X X X X X X 
Re-sequencing X X X X  X 
Corruption X X X X X X 
Delay X X X X  X 
Masquerade X X X X X X 

 

 

Intersecting the data in Table 5, Table 6 and Table 7 allows to assess if any of considered transport 

protocol is robust to the possible set of hazardous events. To this purpose, results of this analysis are 

summarized in Table 8 where we have related the set of hazardous events and the transport protocols. 
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Table 8: Robustness of considered transport protocols against hazardous events. 

 

 Repetition Deletion  Insertion Re-sequencing Corruption Delay Masquerade 

HW systematic 

failure 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

 

SW systematic 

failure  

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

 

Cross-talk  TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

 TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

  

Wires breaking  TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

  TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

 

Antenna 

misalignment 

 TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

  TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 
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Cabling errors  TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

 TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

 

HW random 

failures 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

 

HW ageing TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

 

Use of 

uncalibrated 

instruments 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

 

Use of 

unsuitable 

instruments 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 
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Incorrect HW 

replacement 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

 

Fading effects  TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

 TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

 

EMI  TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

  TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

  

Human 

mistakes 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

 

Thermal noise  TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

  TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 
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Magnetic storm  TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

  TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

 

Fire  TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

  TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

 

Earthquake  TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

  TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

 

Lightning  TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

  TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

 

Overloading of 

TX system 

 TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

   TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 
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Wire tapping TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

 

HW damage or 

breaking 

 TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

  TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

 

Unauthorized 

SW 

modifications 

(a) 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

Transmission 

of 

unauthorized 

messages (a) 

TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

QUIC 

 TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 

   TCP, 

TCP+TLS, 

SCTP, 

SCTP+TLS, 

UDP, QUIC 
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7.4 Comments on security aspects of HTTP and FTP and their secure versions 

 

HTTP 

HTTP is used for communications over the Internet, in general adopted by web browsers to retrieve 

web pages from a remote server (https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html).  

 

The client uses simple messages and methods to facilitate applications to get the data from the 

server. Case sensitive examples are reported in Table 9, while others are in 

https://www.tutorialspoint.com/http/http_requests.htm. 

 

 

Table 9: Examples of HTTP 1.1 methods 

 

Method Description 

GET To retrieve information from the given server using a given URI 

POST To send data to the server (e.g., customer information, file upload) using 

HTML 

PUT Replaces all the current representations of the target resource with the 

uploaded content 

DELETE Removes all the current representations of the target resource given by URI 

CONNECT Establishes a tunnel to the server identified by a given URI 

 

 

HTTP commands are sent in plaintext and anyone monitoring the connection can read them. Then, 

any data sent through this protocol such as a password, a credit card number, or any other data 

entered into a form can be seen by others.  

 

In addition to the sniffing of transmitted data using HTTP, other threats are: 

 

• The possibility to access other files in the server by exploiting a sniffed URI from another request. 

An attacker can slightly modify the sniffed URI and retrieve other file on the same server without 

having the permission. A possible solution can be the disaggregation of the path name and the file. 

 

• Another threat is based on the deliberate mis-association of the IP address and the DNS (Domain 

Name System) name. This attack is called DNS spoofing and can be counteract by updating the DNS 

information instead of using those stored in the local cache. 

 

• Similarly to the previous one, the same request can be valid for more than one servers in case an 

organization has multiple locations. Then, one server can be accessed instead of the one contact by 

the request. The problem in this case can be that resources can be overwritten in the wrong server. 

 

• When a client accesses a server with credentials for its authentication, the browser can store them 

indefinitely. Time outs and expiring passwords should be used to mitigate this threat. 
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• In addition to remote servers, data can be stored in proxy servers and local caches to improve the 

time responsiveness. Then, they can store both sensitive user data and organization data as they 

behave as a men-int-the-middle in the communication, then being appealing by attackers. Further 

protection should be implemented by the proxy and cache providers. Anyway, it is not usual in the 

rail application to have a proxy. 

 

The inclusion of the TLS protocol layer above the transport protocol allow to encrypt the payload 

and then to avoid many of the threats listed in the previous points.  

 

 

FTP 

Similarly to HTTP, FTP has a client-server architecture and it is used by applications to easily 

transfer files between computers over the Internet. Commands are simple and, even in this case, are 

transmitted in plain text. Examples of command lines are [27]: 

 

 

Table 10: Examples of FTP commands 

 

Command Description 

RETR Get file from the remote computer 

STOR Accept data and store as a file  

RNFR, RNTO Renames a file 

QUIT Exits from FTP 

DELE Deletes a file 

 

A list of other FTP commands are available in [27]. Other FTP commands for Windows server are 

available at: https://www.serv-u.com/ftp-server-windows/commands, while for IBM systems at 

https://www.ibm.com/docs/en/aix/7.2?topic=f-ftp-command. 

 

 

FTP is considered a non-secure protocol because it relies on clear-text usernames and passwords 

for authentication and the data transferred is not encrypted (https://www.integrate.io/blog/5-tips-

on-avoiding-ftp-security-issues/). It makes FTP vulnerable to malicious techniques such as packet 

sniffing, spoofing attacks, and brute force attacks. 

 

Possible solutions are reported in the following. 

 

• The adoption of a transport layer which implements a security layer is the most popular solution as 

they create an encrypted connection between the client and the server. Similarly to HTTP, the usage 

of TCP and TLS enable to create the FTPS and then to solve many of the problems related to the 

threats similar to that of HHTP.  

 

• Instead of using TLS, other solutions are available. One of them is the Secure Socket Layer (SSL), 

and SSH File Transfer Protocol (also known as Secure File Transfer Protocol or SFTP); [28] 
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• Another solution exploits the security functionalities provided at application level by common cloud 

storage services such as Google Cloud Storage or Microsoft OneDrive. Nevertheless, in this case rail 

applications should be deployed in external and public clouds, that in some cases could not be 

accepted by rail operators; 

 

• In the transmission the file could be encrypted its self, overcoming the plain transmission over 

unsecure channel. Then, the file should be encrypted at the server and decrypted at the client. Some 

delays con be increased; 

 

• Finally, an IP blacklist can be considered to reduce the malicious nodes to eavesdrop the FTP file or 

a whitelist to restrict the access to the server, containing the FTP file. 

 

 

7.5 Conclusions on security analysis 

 

Concerning the transport protocols, we noted that the usage of the most popular IETF transport 

protocols and the corresponding secured versions provide a good robustness to many or all of the 

threats listed in Table 7. The only protocol presenting major problems is UDP where simplicity is 

obtained at the expense of reliability and security. TCP and SCTP allows to secure transmissions 

against threats. In addition, when TLS is used, both in conjunction with TCP and SCTP or in an 

integrated manner in the QUIC, all the security problems are solved,  

 

Concerning the application protocols stacked above the transport layer, HTTP and FTP do not 

implement any security mechanism. Generally, security issues at this level are solved by providing 

a security layer below them. To this purpose the addition of TLS above the transport protocol such 

as TCP or the usage of a transport protocol already embedding TLS such as QUIC, allows to create 

a secure version of the two application protocols i.e., the HTTPS and the FTPS. Theoretically, in 

same specific cases, security layers or algorithms could be added even at application level (i.e., 

above the HTTP and FTP). Examples are those of the banks in case of their clients have to access 

to their bank account and make economic transactions. These cases are very specific and usually 

require to have a dedicated user equipment.  
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8. Conclusions 
 

This deliverable responds to the objective a in workstream 2, and it is devoted to identification of 

the appropriate transport protocols ensuring the required communication and characteristics 

capabilities in the application development stage as well as of security aspects.  

 

To assess the performance of the secure version of the transport and of some combinations of 

application and transport protocols we have used the software emulator developed in the Task 3.3 

which allows to reproduce the behavior of the communication bearers at IP protocol level. Then, in 

this case we used it to evaluate the performance of the transport protocols: TCP cubic, TCP BBR, 

UDP and SCTP and the recent protocol QUIC. 

 

Performances have been evaluated in terms of the statistics (i.e., cumulative distribution function, 

mean, standard deviation etc.) of: 

 
1. The achievable throughput, 

2. The download time, 

3. The message delay. 

 

Analysis has been carried out in mainline railway scenario in different operating conditions i.e., 

variable latency, time variability of the available transmission capacity and packet loss.  

 

In Table 11 we summarize and comment the secure versions of the considered transport protocol(s) 

to be selected for each ACS application class. From results presented in previous Sections we 

observe that transport protocol performance are practically independent from the selected railway 

scenario (e.g., mainline and regional).  

 

Table 11: Summary of transport and application protocols for ACS application classes. 

 

ACS Application 

class 

Transport/Application 

protocol 

Note 

Signaling SCTP+TLS,  

TCP BBR+TLS,  

TCP Cubic+TLS and 

QUIC 

They similar performance in case of low 

latency. TCP BBR, TCP Cubic and QUIC 

present a reduced message delay for higher 

latency introduced by the channel. 

Nevertheless, as shown in Del. 3.4, in the 

case the packets are enqueued (we have an 

additional delay due to queue) SCTP 

experiences lower latency (even though 

throughput is also reduced).  

Critical Voice UDP(*), TCP BBR,  

TCP-BBR+TLS 

VoIP based voice services use TCP to 

establish an initial connection and for 

signaling. In this case TCP+BBR could be a 
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good choice. (*)UDP is the default (and 

mandatory) choice for transferring voice 

data when VoIP is (obviously) considered. It 

could be of some interest to test the usage of 

TCP with BBR for voice data transfer in low 

PL scenarios. However, this choice would 

mean to abandon the VoIP standard.  

TCP+TLS could also be used for the initial 

connection (for securing signaling data) 

transporting signaling as well as for 

transporting SIP packets; in fact, TCP-BBR 

+TLS provides lower delay in all the 

considered conditions. 

Critical Data TCP BBR, QUIC They experience higher throughput above all 

in lossy communication channel 

HTTP, HTTP/3, FTP 

HTTPS, FTPS 

In the case of low requested latency, sending 

in clear text can be provided (through the 

http and FTP protocols) 

Critical Video UDP*, QUIC, TCP 

BBR 

*Even though in high lossy environments 

UDP should be avoided, typically for video 

data transmissions UDP; however, UDP is 

not used alone; in fact, the typical protocol 

used for video transmissions includes 

RTP/RTPC protocols. TCP BBR could be 

used because is less sensitive to loss in terms 

of latency mainly for signaling such as 

RTPC (when UDP is not used even for 

RTPC) and especially for SIP protocol (if 

and when it is used for).  

The possibility of stacking RTP/RTPC over 

QUIC is currently under study and seems to 

be a promising solution. At the moment of 

this writing only preliminary proposal exist 

and no software implementations of 

QUIC+RTP/RTPC are available. 

Non-critical Data TCP BBR, TCP cubic Most of the traffic uses TCP and both TCP 

variants could be used provided coexistence 

issues are taken into account. 

HTTP, HTTP/3, FTP 

HTTPS, FTPS 

In the case of low requested latency, sending 

in clear text can be provided (through the 

http and FTP protocols) 

Internet Connectivity QUIC, TCP BBR, TCP 

cubic 

Most of the traffic uses TCP. UDP is 

considered for some applications protocols 

that use it as default transport protocol. 

HTTP, HTTP/3, FTP 

HTTPS, FTPS 

Depending on the service types and their 

particular applications 
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In case of lossy channel, results show that in every scenario the TCP BBR and QUIC protocols offer 

the better performance since they are: 

 
a. able to track the available transmission channel capacity which in a rail scenario can vary with time, 

b. resistance (i.e., practical insensitivity) to packet loss; in fact, we have observed that in all cases since 

the CDF of the TH at PL=1% are similar to that obtained at PL=0%.  

 

The QUIC protocol is of great interest since it provides robust performance in many (all) the 

considered scenarios. However, at the moment of this writing it suffers of many drawbacks that can 

limit its diffusion especially in the ACS environment. QUIC is currently under standardization and 

revision. Actually at least two versions exist of QUIC (i.e., the Google version and the IETF 

version). Some implementations of QUIC are available on the open-source community and the LS-

QUIC is suggested for being used in a production environment. In addition, QUIC is not integrated 

in the kernel of the most important OSs such as Linux and many times the existing servers do not 

implement or support QUIC.  

 

In the second part of this deliverable, to be compliant with Task 3.6 activities, we have analyzed 

security aspects of the considered transport and application protocols. We have observed that the 

robustness against the several threats listed in Table 5 of the considered application protocols is 

mainly related to the characteristics of the underlying transport protocol. Obviously, additional 

security mechanisms could be added at application level i.e., above the application protocol.  

Even in this case TCP and QUIC implement all the security mechanisms able to successfully 

counteract many of the threats indicated in Table and, in the QUIC case, also to guarantee security. 

The addition of the TLS layer to TCP allows to guarantee security against the considered threats. 

 

To summarize the main findings in the WP3 activities we should start by observing that ACS system 

has been conceived, designed and build around the IETF protocols. For this reason, we believe that 

railway developers of ACS should orient their choice on well accepted IETF transport protocols 

such as TCP and also UDP for very limited secondary applications (refer to Table 11indicating the 

ACS traffic classes). In particular from the analysis carried out in the AB4Rail WP3 activities it has 

been clearly emerged that BBR congestion control should be the preferred choice so to counteract 

packet loss effects and to guarantee the maximum achievable throughput. However, as indicated in 

Del.3.4 [1] the BBR could suffer of coexistence problems with other TCP links using different 

congestion control strategies such as Cubic. For this reason, it is important that the on-board ACS-

GW as well as the ACS-GW at the trackside guarantee that all the TCP connections sharing the 

same ACS tunnel use the same congestion control algorithm so to avoid un-desired capacity starving 

phenomena. 
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