

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

 1 | 79

Grant Agreement Number: 101014517

Project Acronym: AB4Rail

Project title: Alternative Bearers for Rail

DELIVERABLE D [3.5]
[Analysis of options for transport and application protocols and of their secure versions]

1 PU: Public; CO: Confidential, only for members of the consortium (including Commission Services)

2 https://projects.shift2rail.org/s2r_matrixtd.aspx

Project acronym: AB4Rail

Starting date: 01-01-2021

Duration (in months): 24

Call (part) identifier: S2R-OC-IP2-02-2020

Grant agreement no: Number 101014517 – IP/ITD/CCA – IP2

Grant Amendments: N/A

Due date of deliverable: 30-06-2022

Actual submission date: 22-07-2022

Coordinator: Franco Mazzenga (Radiolabs)

Lead Beneficiary: Romeo Giuliano (USGM)

Version: 0.1

Type: Report

Sensitivity or

Dissemination level1:

PU

Contribution to S2R

TDs or WAs2

TD2.1

Taxonomy/keywords: Adaptable Communication System; ACS; IP emulator; IP

impairment models; transport protocols; application

protocols; secured versions; TCP; SCTP; QUIC

This project has received funding from the Shift2Rail Joint Undertaking (JU) (now

Europe's Rail Joint Undertaking, EU-RAIL) under grant agreement No. 101014517. The

JU receives support from the European Union’s Horizon 2020 research and innovation

programme and the Shift2Rail JU members other than the Union.

Ref. Ares(2022)8370401 - 02/12/2022

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

2 | 79

Authors Table

Name Affiliation Contribution

Romeo Giuliano Università degli Studi Guglielmo Marconi

(USGM)

Main contributor

Franco Mazzenga Radiolabs (RDL) Main contributor

Francesco Vatalaro University of Rome Tor Vergata Main contributor

Alessandro Vizzarri Radiolabs (RDL) Support to contributors

The document history table provides a summary of all the changes in reverse chronological order

(latest version first).

Document history

Date Name Affiliation Position/Project Role Action/ Short

Description

22 Jul.

2022

Romeo

Giuliano

Università degli

Studi Guglielmo

Marconi (USGM)

WP leader Analysis of the transport

and application

protocols and their

secured versions

2 Dec.

2022

Romeo

Giuliano

Università degli

Studi Guglielmo

Marconi (USGM)

WP leader The updated document

includes the revisions

required by PO

Disclaimer

The information in this document is provided “as is”, and no guarantee or warranty is given that

the information is fit for any particular purpose. The content of this document reflects only the

author’s view – the Shift2Rail Joint Undertaking (now Europe's Rail Joint Undertaking, EU-RAIL)

is not responsible for any use that may be made of the information it contains. The users use the

information at their sole risk and liability.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

3 | 79

Table of Contents

Table of Contents ... 3

Executive Summary ... 5

List of abbreviations, acronyms, and definitions .. 6

List of Figures .. 9

List of Tables .. 11

1. Introduction.. 12

1.1 Purpose and scope of the document ... 12

1.2 Document organization .. 12

1.3 Reference Documents .. 13

2. Description and organization of activities ... 14

3. Analysis of secure transport protocols: methodology .. 17

4. Traffic generation and parameters .. 23

4.1 Source traffic generation and assumptions .. 23

4.2 Traffic generation for transport protocol testing. .. 23

4.3 Traffic generation for application/transport protocols analysis 24

4.4 Performance parameters considered for performance assessment 27

5. QUIC transport protocol analysis .. 28

5.1 Current status of QUIC development and deployment .. 28

5.2 QUIC available implementations .. 29

5.2.1 Python Aioquic library .. 29

5.2.2 LS-QUIC library .. 29

6. Performance Results .. 31

6.1 Secure versions of the transport protocols ... 31

6.2 Application protocols ... 35

6.2.1 HTTP ... 35

6.2.2 HTTPS ... 38

6.2.3 FTP .. 42

6.2.4 FTPS .. 45

6.3 Periodic Short Messages Delivery ... 49

6.3.1 Message Delay including TLS handshaking time ... 49

6.3.2 Message Delay without the TLS negotiation time .. 53

6.3.3 Comparison of message delay with and without TLS handshake 54

7. Analysis of security threats and possible defense techniques .. 56

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

4 | 79

7.1 Most common threats and countermeasures envisaged in message transmissions 56

7.2 Analysis of transport protocols to counteract the security threats 58

7.3 Summary and findings for security in transport protocols .. 63

7.4 Comments on security aspects of HTTP and FTP and their secure versions 72

7.5 Conclusions on security analysis ... 74

8. Conclusions ... 75

9. References ... 78

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

5 | 79

Executive Summary

This deliverable is the output of the Task 3.5 of AB4Rail project, which is dedicated the analysis of

options for transport and application protocols and of the Task 3.6, concerning the analysis of security

versions of the transport and application layer protocols.

Protocol performances have been assessed by means of the software emulator developed in the Task

3.3, that can reproduce the behavior of the communication bearers as seen at IP protocol level and it

allows to account for the variations with time of the typical packet impairments characterizing the IP

layer link such as: bandwidth, latency and packet loss rate. In particular we account for the variations

with time of the available transmission capacity along the track due to variability of the modulation

and coding scheme.

The analysis has concerned the secure versions of the transport protocols indicated in Del. 3.4 [1]

with the addition of the novel QUIC protocol. The following standard application protocols:

Hypertext Transfer Protocol (HTTP) and File Transfer Protocol (FTP) and their secure versions have

been also analyzed. Analysis has been carried out in terms of achievable throughput at application

level, the message delay and the download time. These are the classical key performance indicators

used in the scientific literature to assess the performance of transmission protocols.

The performances of different combinations of application and transport protocols have been

analyzed taking into account for different traffic categories that can be that can be traced back to the

ACS traffic classes. As an example, HTTP/HTTPS application protocols are typically used in

conjunction with TCP using Cubic congestion control algorithm. In AB4Rail Task 3.5 activities we

have extended the study of HTTP/HTTPS over TCP with BBR congestion protocol, over the SCTP

and QUIC protocols. The usage of SCTP for transporting HTTP/HTTPS is new and no results are

available in the literature. The (“obsolete”) SSH File Transfer Protocol (SFTP), which adopts Secure

Sockets Layer (SSL) as secure layer has been gradually replaced with the FTPS adopting TLS.

From our results usage of TCP with BBR and QUIC even in conjunction with HTTP application

protocol provides the best performance in terms of throughput and latency showing a substantial

insensitivity to moderate packet loss.

In this deliverable we discuss the results of the research activities indicated in Task 3.6 which respond

to the objective d in workstream 2, [2]. They concern the security analysis of the transport and

application protocols. As demonstrated in [3] the capability of one transmission protocol (at transport

or application level) to protect against one or more risks is related to the presence of specific

functionalities implemented in the protocol itself.

As indicated in [2] the main output of this activity is a Table indicating the most appropriate (secure)

transport and transport/application protocol to be selected for the ACS application class.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

6 | 79

List of abbreviations, acronyms, and definitions

Acronym Definition

3G 3rd Generation

3GPP Third Generation Partnership Project

4G 4th Generation

5G 5th Generation

AB Alternative Bearer

ACS Adaptable Communication System

AI Artificial Intelligent

API Application Programming Interface

BS Base Station

BBR Bottleneck Bandwidth and Round-trip propagation time

CDF Cumulative Distribution Function

CTA Communication Traffic Analysis

DS downstream

EIA Electronic Industries Alliance

eNB evolved Node B

ERTMS European Rail Traffic Management System

ETCS European Train Control System

FTP File Transfer Protocol

FTPS File Transfer Protocol over Transport Layer Security

GEO Geographical Earth Orbit

GRE Generic Routing Encapsulation

GW Gateway

HAPS High Altitude Platform Station

HTTP Hypertext Transfer Protocol

HTTPS HyperText Transfer Protocol over Transport Layer Security

ICT Information and Communications Technology

IETF Internet Engineering Task Force

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

7 | 79

KPI Key Performance Indicators

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

LAN Local Area Network

LEO Low Earth Orbit

MA Movement Authority

MAC Message Authentication Code

MCS Modulation and Coding Scheme

MEO Medium Earth Orbit

MSS Maximum Segment Size

MTU Maximum Transmission Unit

NA Network Application

NAT Network Address Translation

NG Network Gateway

NIC Network Interface Card

NSA Non-Stand Alone

OA On Board Application

OFDM Orthogonal Frequency-Division Multiplexing

OG On-Board Gateway

OS Operating System

PDCP Packet Data Convergence Protocol

P-GW Packet Gateway

PL packet loss probability

PLMN Public Land Mobile Network

PMTUD Path MTU Discovery

PR Position Report

PRB Physical Resource Block

PSTN Public Switched Telephone Network

QoS Quality of Service

QUIC Quick UDP Internet Connections

RAN Radio Access Network

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

8 | 79

RB Resource Block

RDP Remote Desktop Protocol

RLC Radio Link Control

RRC Radio Resource Control

RTT Round Trip Time

SCTP Stream Control Transmission Protocol

SFTP Secure Shell (SSH) File Transfer Protocol

SINR Signal-to-Interference plus Noise Ratio

SIP Session Initiation Protocol

SNR Signal-to-Noise Ratio

SLA Service Level Agreement

SSL Secure Sockets Layer

TBF token bucket First-In First-Out

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

TIA Telecommunications Industry Association

TLS Transport Layer Security

VoIP Voice over IP

UDP User Datagram Protocol

UE User Equipment

US upstream

VM Virtual Machine

Wi-Fi Wireless Fidelity

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

9 | 79

List of Figures

Figure 1. High level emulator scheme used for the assessment of Transport and

Application/Transport protocols 17

Figure 2. Part of python code implementing the secure server for SCTP transport protocol with TLS

 21

Figure 3. Snapshot of the Kepler ETSI reference HTML page to be used for testing HTTP(S)

protocols. 25

Figure 4. Snapshot of the newspaper reference HTML page to be used for testing HTTP(S)

protocols. 26

Figure 5. Average Throughput vs channel latency for: (a) PL=0% (ideal case) and (b) PL=1%. 32

Figure 6. Average Throughput vs packet loss for (a) channel latency = 25 ms and (b) channel

latency = 150 ms. 33

Figure 7. Average Throughput vs file size for a channel latency of 25 ms and for (a) PL=0% (ideal

case) and (b) PL=1%. 33

Figure 8. CDF of the throughput TH for transport protocols for ideal case (PL=0%, colored curves)

and PL=1% (black curves): latency = 25 ms (a) and latency = 150 ms (b). 34

Figure 9. Average Download Time vs channel latency for PL=0% (ideal case) and PL=1%: (a) ETSI

page; (b) NEWSPAPER page. 36

Figure 10. Average Download Time vs packet loss for a channel latency = 25 ms (colored curves)

and a channel latency = 150 ms (black curves): ETSI page (a), NEWSPAPER page (b). 37

Figure 11. CDF of the download time for HTTP for latency = 25 ms and for ideal case (PL=0%,

colored curves) and PL=1% (black curves): ETSI page (a) and NEWSPAPER page (b). 37

Figure 12. CDF of the download time for HTTP for latency = 150 ms and for ideal case (PL=0%,

colored curves) and PL=1% (black curves): ETSI page (a) and NEWSPAPER page (b). 38

Figure 13. Average Download Time vs channel latency for: (a) PL=0% (ideal case) and (b) PL=1%.

 39

Figure 14. Average Download Time vs packet loss for a channel latency = 25 ms (colored curves)

and a channel latency = 150 ms (black curves): ETSI page (a), NEWSPAPER page (b). 40

Figure 15. CDF of the download time for HTTP for latency = 25 ms and for ideal case (PL=0%,

colored curves) and PL=1% (black curves): ETSI page (a) and NEWSPAPER page (b). 41

Figure 16. CDF of the download time for HTTP for latency = 150 ms and for ideal case (PL=0%,

colored curves) and PL=1% (black curves): ETSI page (a) and NEWSPAPER page (b). 41

Figure 17. Average Download Time vs channel latency for PL=0% (ideal case, solid lines) and

PL=1% (dashed lines): file size = 0.5 MBYTE (a); file size = 4 MBYTE (b). 42

Figure 18. Average Download Time vs packet loss for a channel latency = 25 ms (colored curves)

and a channel latency = 150 ms (black curves): file size = 0.5 MBYTE (a); 43

Figure 19. Average Download Time vs file size for PL=0% (ideal case, solid lines) and PL=1%

(dashed lines): channel latency of 25 ms (a) and channel latency of 150 ms (b). 43

Figure 20. CDF of the download time for FTP for latency = 25 ms and for ideal case (PL=0%,

colored curves) and PL=1% (black curves): file size = 0.5 MBYTE (a); file size =

4 MBYTE (b). 44

Figure 21. CDF of the download time for FTP for latency = 150 ms and for ideal case (PL=0%,

colored curves) and PL=1% (black curves): file size = 0.5 MBYTE (a); file size =

4 MBYTE (b). 44

Figure 22. Average Download Time vs channel latency for PL=0% (ideal case, solid lines) and

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

10 | 79

PL=1% (dashed lines): file size = 0.5 MBYTE (a); file size = 4 MBYTE (b). 46

Figure 23. Average Download Time vs packet loss for a channel latency = 25 ms (colored curves)

and a channel latency = 150 ms (black curves): file size = 0.5 MBYTE (a); 46

Figure 24. Average Download Time vs file size for PL=0% (ideal case, solid lines) and PL=1%

(dashed lines): channel latency of 25 ms (a) and channel latency of 150 ms (b). 47

Figure 25. CDF of the download time for FTP for latency = 25 ms and for ideal case (PL=0%,

colored curves) and PL=1% (black curves): file size = 0.5 MBYTE (a); file size =

4 MBYTE (b). 48

Figure 26. CDF of the download time for FTP for latency = 150 ms and for ideal case (PL=0%,

colored curves) and PL=1% (black curves): file size = 0.5 MBYTE (a); file size =

4 MBYTE (b). 48

Figure 27. Average Message Delay vs channel latency for PL=0% (ideal case) and PL=1%:

(a) 1 kbyte-file size; (b) 10 kbyte-file size. 50

Figure 28. Average Message Delay vs packet loss for a channel latency = 25 ms (colored curves)

and a channel latency = 150 ms (black curves): (a) 1 kbyte-file size; (b) 10 kbyte-file size. 50

Figure 29. CDF of the Message Delay of Message delivery service for latency = 25 ms and for ideal

case (PL=0%, colored curves) and PL=1% (black curves): 51

Figure 30. CDF of the Message Delay of Message delivery service for latency = 150 ms and for

ideal case (PL=0%, colored curves) and PL=1% (black curves): 52

Figure 31. CDF of the Message Delay of Message delivery service for latency = 25 ms and for ideal

case (PL=0%, colored curves) and PL=1% (black curves): 53

Figure 32. CDF of the Message Delay of Message delivery service for latency = 150 ms and for

ideal case (PL=0%, colored curves) and PL=1% (black curves): 53

Figure 33. CDF of the Message Delay of Message delivery service for latency = 25 ms and for ideal

case (PL=0%), colored curves) and PL=1% (black curves): 54

Figure 34. CDF of the Message Delay of Message delivery service for latency = 150 ms and for

ideal case (PL=0%, colored curves) and PL=1% (black curves): 55

Figure 35: Principle of the header format of QUIC taken from [7], [25] 62

Figure 36: Example of encapsulation of QUIC packet into an UDP payload [26]. 62

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

11 | 79

List of Tables

Table 1: Reference Documents. 13
Table 2: Standard Python libraries considered in software development. 19
Table 3: Considered Secure Transport/application protocols 19
Table 4: Matrix to report defending technique (in blue) to counteract the security threats (in red) [3].

 58
Table 5: secure functionalities supported by transport protocols to counteract the security threats. 63
Table 6: Relationship between hazardous events and threats (Table A.1 in [3]) 65
Table 7: Implemented countermeasures by transport protocols 66
Table 8: Robustness of considered transport protocols against hazardous events. 67
Table 9: Examples of HTTP 1.1 methods 72
Table 10: Examples of FTP commands 73
Table 11: Summary of transport and application protocols for ACS application classes. 75

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

12 | 79

1. Introduction

This document constitutes the Deliverable D3.5 “Analysis of options for transport and application

protocols and of their secure versions” according to Shift2Rail Joint Undertaking (now Europe's Rail

Joint Undertaking, EU-RAIL) programme of the project titled “Alternative Bearer for Rail” (Project

Acronym: AB4Rail, Grant Agreement No 101014517 — IP/ITD/CCA — IP2). On 22nd July 2020,

the European Commission awarded a grant to the AB4Rail consortium of the Shift2Rail / Horizon

2020 call (S2R-OC-IP2-02-2020). AB4Rail is a project connected to the development of a new

Communication System planned within the Technical Demonstrator TD2.1 of the 2nd Innovation

Programme (IP2) of Shift2Rail JU: Advanced Traffic Management & Control Systems.

The IP2 “Advanced Traffic Management & Control Systems” is one of the five asset-specific

Innovation Programmes (IPs), covering all the different structural (technical) and functional (process)

sub-systems related to control, command, and communication of railway systems.

1.1 Purpose and scope of the document

The aim of this document is to identify the appropriate transport and application protocol pair(s) on

realistic railway scenarios also including security. To this purpose, we analyze the selected transport

protocols in the Deliverable 3.4 (i.e., TCP in its versions Cubic and bottleneck bandwidth and round-

trip propagation time (BBR) congestion control algorithms, SCTP) by adding them the TLS. QUIC

is also included in the analysis. In this evaluation we considered a stream between a client mounted

on-board of a train and a remote server. Then we evaluate the application protocols HTTP and FPT

by downloading a webpage with different characteristics and a file with several sizes.

1.2 Document organization

The document is organized according to AB4Rail Grant Agreement Number 101014517 (RD-1) and

AB4Rail Consortium Agreement (RD-2). The document structure is the following.

In Section 2, we introduce the organization of the activities for the transport and application protocol

evaluation at high-level.

In Section 3, we describe the methodology used for the analysis of the transport protocols that use

TLS for the protection of end-to-end transmissions through cryptographic techniques.

In Section4, it is detailed the generation of the source traffic in terms of streams parameters, web

pages for download and message characteristics. Moreover, evaluation parameters have also defined

to be used for the subsequent analysis.

In Section 5, we summarize the main features of the QUIC protocol and we review the main

implementations of QUIC and their related software libraries.

In Section 6 we report and discuss the results obtained by the emulator developed in Task 3.3 and

described in the Deliverable 3.3 [4] of the AB4Rail project. We considered the following evaluations:

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

13 | 79

• The analysis of the secure transport protocols, which include the TLS layer;

• The analysis of the application protocols HTTP, FTP, HTTPS and FTPS;

• The analysis of the periodic short message delivery

In Section 7, we analyze the security of the protocols working at transport and application layers, by

considering threats and possible defense techniques. We focused on TCP, UDP and SCTP by adding

them security functionalities provided by TLS. This way application protocols as HTTP and FTP are

able to transmit data from the source to the destination in a secure way.

Finally, conclusions are drawn in Section 7.

1.3 Reference Documents

Table 1: Reference Documents.

Document Number Document Description

RD-1 AB4Rail Grant Agreement Number 101014517 – IP/ITD/CCA – IP2

RD-2 AB4Rail Consortium Agreement

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

14 | 79

2. Description and organization of activities

This document provides the results concerning the analysis of options for transport and application

protocols. The document also contains the results concerning the analysis of secure version of the

transport and application layer protocols.

Results presented in this Deliverable respond to objective c and d indicated in the workstream 2 in

[2]. Activities have been devoted to the identification of the appropriate transport and application

protocol pair(s) ensuring the required communication and characteristics capabilities for specific

classes of railway application envisaged for Adaptable Communication System (ACS) applications

i.e., critical and business. From the results and conclusions presented in Deliverable 3.4 [1] we

restricted our analysis to the main rail applications requiring the following standard application

protocols for proper operations: Hypertext Transfer Protocol (HTTP) and File Transfer Protocol

(FTP). The message-based classes of applications that should be considered in the analysis of

application and transport protocols include Session Initiation Protocol (SIP)/SDP messages for ACS

signaling, European Rail Traffic Management System/European Train Control System

(ERTMS/ETCS), web-based railway applications and file transfer/download applications.

The transport protocols identified and selected in the previous Task 3.4 will be considered in these

activities. For each of the considered transport/application protocol pair for which a (stable) software

implementation is available (on Linux) the performance evaluation will be carried out using the IP

emulator/simulator developed in Task 3.3 which is described in Deliverable 3.3 [4].

Taking into account for the results obtained in the Deliverable D3.4, evaluation activities in this task

have organized the activities detailed in [2] as follows. We have identified the main classes of traffic

to be used for protocol assessment:

1. Transfer of data streams of varying length for the testing of the secure versions of the considered

transport protocols i.e., Transmission Control Protocol (TCP), Stream Control Transmission Protocol

(SCTP) and Quick UDP Internet Connections (QUIC)), which include the Transport Layer Security

(TLS) protocol layer. It should be remarked that the analysis of transport protocols, originally confined

to Task 3.4 activities, continues in this Task 3.5 because QUIC protocol which is a secure protocol by

default. In this case performance comparison will be carried out

2. File transfer for testing FTP and File Transfer Protocol Secure (FTPS) application protocols to be used

for file transfer-based services.

3. Download of web-pages of different sizes and complexity for testing the HTTP/HTTPS (Hypertext

Transfer Protocol Secure) application protocols;

4. Periodic transmission of messages with variable length using transport protocols TCP (CUBIC+BBR),

SCTP and QUIC This traffic class is important for considering the transmission delay of messages

transmitted by protocols such as SIP/SDP and ERTMS/ETCS that are used for ACS and railway

control/management. These messages are transmitted through the on-board ACS-GW.

To assess performances of the considered transport and application protocols, we have re-used the IP

emulator developed in [Del.3.3 of AB4Rail] that was also used to obtain the results in Del. 3.4 [1].

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

15 | 79

In analyzing the performance of HTTP/HTTPS we have considered different combination of transport

and application pairs. In particular, HTTP/HTTPS are typically used in conjunction with TCP

implementing Cubic congestion control. In AB4Rail Task 3.5 activities we have extended the study

to the HTTP/HTTPS over TCP with BBR congestion protocol, over the SCTP and QUIC protocols.

The usage of SCTP for transporting HTTP/HTTPS is new and no results are available in the literature.

On the basis of the achieved results, we have determined the application/protocol pair allowing to

achieve the end-to-end performance for the selected application traffic classes. Application/transport

protocol analysis has been carried out in terms of: technology features such as maturity flexibility

(this aspect is important for QUIC protocol which is currently under standardization), latency and the

achievable throughput under different operating conditions. For what concerns traffic prioritization,

the considered transport and application protocols are neutral with respect to the data flows they

transport i.e., they do not implement any mechanism for traffic prioritization. These mechanisms

(when and if necessary) could be implemented at application level so to manage the flows generated

by the application that are transmitted using the (available) underlying transport protocol.

As evidenced in the Deliverable 3.4 [1] and even in this deliverable, the possibility of adopting well

mature and widely accepted Internet Engineering Task Force (IETF) network protocols based on

TCP/IP suite, as in ACS communications, allows to facilitate/simplify engineering, operational and

implementation aspects. In particular, implementation complexity is drastically reduced since

effective and stable implementations of these protocols are available on the market as well as on the

open-source community including the Linux OS. In addition, several and widely used (open-source)

tools for debugging, monitoring packet flows and collecting data for successive analysis are available.

Some of them have been used in our research activities to extract performance data from the emulator

runs and to monitor end-to-end packet flows so to detect possible protocol anomalies or malfunctions.

The Tshark (https://www.wireshark.org/docs/man-pages/tshark.html) (i.e., the command line version

of wireshark) tool has been used to collect statistics. The aspects of monitoring packet flows are

important for ACS specially to assess control plane proper operations. The main output of this first

activity involving the analysis of secure transport protocols and some combinations of

application/transport protocols for task is a Table indicating the most appropriate transport

protocol/application pair(s) to be selected for each ACS application class that can be casted in one of

the four traffic categories indicated in the previous points 1-4, that we have considered to assess

performance. From the results presented in Deliverable 3.4 results will be obtained considering only

the challenging mainline railway scenario. In fact, it should be remarked that from [1] we didn’t

observe a marked dependence of transport protocol performance on the rail scenario.

In this deliverable we also report the results of the research activities indicated in Task 3.6 and

concerning the security analysis of the transport and application protocols. As indicated in [2] the

analysis focuses on the following list of general technical risks indicated in EN 50159 regarding the

safety-related messages for specific railway applications such as ERTMS/ETCS:

• Repetition of message

• Deletion of message

• Insertion of message

• Re-sequencing of two or more messages

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://www.wireshark.org/docs/man-pages/tshark.html

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

16 | 79

• Corruption of message

• Delay of message

• Masquerade (a type of attack where the attacker pretends to be an authorized user of a system so to

gain access to it or to gain greater privileges than they are authorized for).

The Task 3.6 activities respond to the objective d in workstream 2, [2]. As demonstrated in [EN

50159] the possibility for the transmission protocol (at transport or application level) to protect

against one or more of the risks indicated in the previous points is strictly related to some specific

functionalities implemented in the protocol itself.

Starting from this observation, to respond properly to the objective d in workstream 2 we have

extended the analysis procedure reported in [EN 50159]. The extended procedure allows to achieve

the security assessment of both transport and the considered application/transport protocols. In

particular, we have analyzed the security aspects of:

a. TCP, User Datagram Protocol (UDP), SCTP and of their secure versions

b. QUIC transport protocols and the

c. application protocols FTP and FTPS, HTTP and HTTPS.

Analysis has been carried out with respect to the risks indicated in the previous list. The (obsolete)

SSH File Transfer Protocol (SFTP), which adopts Secure Sockets Layer (SSL) as secure layer has

been gradually replaced with the FTPS adopting TLS. The RaSTA in the security context is

investigated in [1] and the interested reader is referred to this paper.

As in the previous case and as indicated in [2] the main output of this activity is a Table indicating

the most appropriate (secure) transport and transport/protocol to be selected for the ACS application

class and for each one of the considered network scenarios.

Note: The Remote Desktop Protocol (RDP) indicated in the original project proposal is a secure

network communications protocol developed by Microsoft for the transfer of PC desktop contents

specifically and only between client and server running Windows OS. The RDP allows network

administrators to remotely diagnose problems that individual users encounter and gives users remote

access to their physical work desktop computers. We believe that remote reproduction of a Windows

OS desktop on a remote machine has non practical application in critical and business railway

applications services that are the two categories of services and applications analyzed in AB4Rail for

ACS. The RDP protocol could be of some interest when considering connectivity services oriented

to train passengers that (maybe) could have some interest in remotely connecting with their

workstation. In fact, RDP can be used by employees working from home or traveling who need access

to their work computers. User oriented connectivity services have never been of interest in AB4Rail

since they are not considered in ACS development being ACS (and in particular the on-board ACS-

GW) specifically designed to offer connectivity for critical and business railway services.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

17 | 79

3. Analysis of secure transport protocols: methodology

This paragraph describes the methodology used for the analysis of the transport protocols that use

TLS technology (v. 1.3) for the protection of end-to-end transmissions through cryptographic

techniques.

The considered transport protocols including the TLS layer are listed in the following points:

[Del.of.3.4]:

1. TCP (Cubic and Bottleneck Bandwidth and Round-trip propagation time (BBR))

2. QUIC (IETF version)

3. SCTP

The principle scheme of the emulator arrangement used for the performance assessment of the

transport and application/transport protocols is depicted in Figure 1.

Figure 1. High level emulator scheme used for the assessment of Transport and

Application/Transport protocols

The scheme in Figure 1 is inherited from that presented in D3.4. As shown in Figure 1 the only

modifications we have introduced are on the software developed for generating traffic, collecting

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

18 | 79

statistics and to perform on-board ACS GW from/to trackside ACS-GW packet communications. We

consider the testing of secure versions of the transport protocols in D3.4 and the FTP/HTTP

application protocols including their secure versions i.e., HTTPS/FTPS.

Even in this case communications between the on-board and the trackside ACS-GWs are considered.

It is assumed the on-board ACS Gateway (ACS-GW) uses Generic Routing Encapsulation (GRE)

tunnels to establish a connection with the remote ACS-GW located on the trackside side. The ACS

connection emulator that interconnects the client on board the train with the server is the same used

in D.34 and which was developed in Task 3.3 and whose characteristics are detailed in D3.3 [4]. This

emulator implements:

a. Connection between client and server via GRE tunnel

b. Variability of the time of the QoS parameters that characterize the performance of the IP link i.e.:

delay (i.e., latency), packet loss, link capacity, jitter.

As indicated in D3.4, the temporal variability of these parameters, including the link capacity, is

achieved by taking into account the speed profile of the train moving along the considered section.

While the train moves into the cell, the modulation coding scheme can change in accordance with the

distance of the train from the receiving base station i.e., the eNB in the LTE case. In addition, as

illustrated in [1] the transmission capacity available to the train is also function of the number of

trains in the same cell at the same time.

The performance results presented in this Deliverable have been obtained considering the Italian

railway section from Rome to Florence at high speed (mainline scenario) and a realistic train-speed

vs time profile.

For the analysis of the transport and application protocols (objective of Tasks 3.5 and 3.6 of the

AB4Rail project) we have implemented programs acting as traffic sources and sinks indicated in

Figure 1. In particular, source software generates traffic in accordance with the required packet

statistics; sink software can receive and analyze traffic to extract parameters required to achieve

statistics of the performance parameters.

As shown in Figure 1 data sources can inject traffic over the application protocol layer (HTTP(S) or

FTP(S)) or can directly interface with the (secure versions) of the underlying transport protocols. The

Python programming language has been used to program the traffic sources and sinks shown in Figure

1. The following standard libraries, which are well tested and freely available on the Internet, have

been considered in software development.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

19 | 79

Table 2: Standard Python libraries considered in software development.

Library Description

Python Socketserver Framework for the fast realization of network servers based on un-

secure TCP and UDP protocols using standard sockets

Python Aioquic Pythonn implementation for the QUIC IETF protocol

Python HTTP client It defines classes which implement the client side of the HTTP and

HTTPS protocols

Python Urllib3 library Library for the HTTP client implementation based on TCP for Python

Python HTTP server It defines classes for implementing HTTP servers using un-secure TCP

transport protocols only

Python TLS/SSL

wrapper for socket

objects

It provides access to TLS (often known as “Secure Sockets Layer”)

encryption and peer authentication facilities for network sockets, both

client-side and server-side. This module uses the OpenSSL library

Python socket library It provides access to the BSD socket interface implemented on many

OSs

Ftpdlib python library It implements FTP and FTPS server classes

Ftplib python library It implements the FTP and FTPS client classes

For reasons that will be cleared in the next paragraph, we have also considered the LS-QUIC library

implementing a well-tested and consolidated production version of the QUIC protocol.

Several Python libraries indicated in Table 2 implement classes for creating servers (sinks) and clients

(source) that use IP connections based on the TCP/UDP or SCTP transport protocols without adding

any functionality to ensure secure transmissions.

Secure transport protocols are obtained by adding the TLS layer to the existing protocol layer. A good

part of the programming work carried out in Task 3.5 has concerned the extension of the libraries

Python socket and Python HHTP in Table 2 to realize client and server software including secure

functionalities and in particular to implement the protocol stacks for the following secure transport

protocols:

Table 3: Considered Secure Transport/application protocols

Combination Description

 Secure transport protocols

TLS + TCP TCP layer can use Cubic or BBR as congestion

control technique

TLS + SCTP This is a new configuration not discussed in the

current literature

QUIC Usage of Python Aioquic library or LS-QUIC

(see after)

The QUIC Protocol is an important (maybe

unique) example of secure transport protocols

based on UDP providing and extending the

features of the TCP protocol

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

20 | 79

 Secure application protocols

HTTP and

HTTPS

They are transmitted over TCP (Cubic and

BBR) and SCTP

The motivations leading to exclude QUIC

protocols are summarized in the next Section

FTP and

FTPS

They are transmitted over TCP (Cubic and

BBR)

In order to program the transmission software (clients and servers in Table 3) implementing the secure

protocol stacks to be used in the emulator in Figure 1 we have extended the classes available in the

Python libraries in Table 2.

Due to lack of detailed documentation concerning the organization of the classes defined in the

several libraries in Table 2, a significant developing effort has been devoted to:

1. Read and analyse in detail the source code of the base client and server classes implementing TCP

transport provided by the libraries in Table 2;

2. Identify the base server and client classes to be extended (i.e., sub-classed) to introduce the necessary

modifications so to:

a. Add the SCTP socket to the base server and client python classes

b. To properly set the congestion control algorithm in the TCP stack i.e., the TCP BBR and

CUBIC sockets;

c. Add the TLS layer to the TCP (with CUBIC and BBR congestion control algorithms) and

SCTP sockets using the Python SSL library (see Table 2);

d. The QUIC already implements the TLS layer by default; two implementations of QUIC

protocol have been considered for our evaluation (see next);

e. Add the TLS layer to the existing HTTP server so to obtain HTTPS protocol stack

f. Add the SCTP socket to the existing HTTP server classes and to the HTTPS server class

indicated in previous point c.

3. The available FTP and FTPS classes have required no modifications for the creation of the client

(source) and server (sink) entities in Table 3.

As an example, in Figure 2 we indicate the python code implementing the server class for the SCTP

serves using TLS.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

21 | 79

Figure 2. Part of python code implementing the secure server for SCTP transport protocol with TLS

#!/usr/bin/python3

import socketserver

import socket

import ssl

import sctp

class TCPServer(socketserver.TCPServer):

 pass

class BaseServer(socketserver.BaseServer):

 pass

Sub-classing of TCP server in SCTPserver class - the constructor is updated

class SCTPServer(TCPServer):

 def __init__(self, server_address, RequestHandlerClass, bind_and_activate=True):

 BaseServer.__init__(self, server_address, RequestHandlerClass)

 self.socket = sctp.sctpsocket_tcp(socket.AF_INET) # 1. substitute the TCP socket with the SCTP socket

 if bind_and_activate:

 try:

 self.server_bind()

 self.server_activate()

 except:

 self.server_close()

 raise

class SSLSCTPServer(SCTPServer):

 def __init__(self, server_address, RequestHandlerClass, bind_and_activate=True):

 SCTPServer.__init__(self, server_address, RequestHandlerClass, False)

 context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER)

 context.load_cert_chain('server-crt.pem', 'server-key.pem')

 self.socket = context.wrap_socket(self.socket, server_side=True) # 2. add TLS layer to SCTP socket

 if bind_and_activate:

 self.server_bind()

 self.server_activate()

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

22 | 79

As shown in Figure 2, first we generate a new SCTPserver class by sub-classing the TCP server

class available in the TCP python library in Table 2 (see point 1 in Figure 2, highlighted in red). The

new SCTP secure (i.e., TLS based) server class SSLSCTPServer is then obtained by sub-classing

the new SCTPserver class by wrapping the SCTP socket with the TLS layer (see point n.2 in Figure

2, highlighted in red) the original TCP server class defined in python library indicated in Table 2.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

23 | 79

4. Traffic generation and parameters

4.1 Source traffic generation and assumptions

The on-board ACS-GW and the remote ACS-GW in Figure 1 exchange packets. Depending on the

protocol (transport or application/transport) analysis we have considered the possibility of generating

different types of traffic to/from the server and the client.

For the testing of transport protocols, we have assumed the on-board ACS-GW generates traffic

directed to the trackside ACS-GW and vice-versa. We have assumed the upstream and downstream

links show the same behavior in terms of time variability of the IP link parameters. This is a typical

and well accepted assumption in performance analysis of full duplex communication links where it

is assumed that the two separate links in the network behave in the same manner. In this case, the

protocol behavior observed in one direction is also representative of that observed in the reverse

direction. For further considerations in D3.4 we have also reported performance results by varying

the amount of the available maximum transmission capacity (Cmax) on the IP link to account for the

asymmetric difference between uplink and downlink transmission capacity. However, as shown from

results in D3.4 the final conclusions on the overall behavior and performance of transport protocols

after the increase of transmission capacity are unchanged, except for the natural modification of the

absolute values of the performance indicators that obviously improve.

For application/transport protocol testing including HTTP(S) and FTP(S) protocols we have

considered the ACS-GW on the trackside as generating the greatest amount of traffic after the request

from the client for downloading one web page (for HTTP(S)) or one file (for FTP(S)). In this case

the maximum available traffic capacity on the IP link is always set to that of downlink. In this case

the performance statistics are evaluated at the on-board side as shown in Figure 1 for HTTP(S) and

FTP(S).

4.2 Traffic generation for transport protocol testing.

Similarly, to the approach in D3.4, for the testing of secure versions of the transport protocols

including TCP (BBR+CUBIC), SCTP with TLS and QUIC we have considered the generation of data

streams with different lengths of:

• 500 kbytes (short stream),

• 1 Mbytes and

• 2 Mbytes (long stream).

This allows to test the robustness of transport protocols with respect to time variable channel

transmission capacity at IP layer as in the considered railway scenario. In fact, when considering the

transmission assumptions in D3.4 (i.e., LTE technology with 1.28 MHz bandwidth operating in the

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

24 | 79

already existing GSM-R bandwidth) the maximum achievable (bit rate) transmission capacity under

the most favourable transmission conditions (i.e., modulation-coding-scheme (MCS) with 64 QAM

with 4/5 coding) is about 5.2 Mbps. When the train moves in the cell the available transmission

capacity can vary during the transmission of the stream due to variability of the achievable MCS to

account for the distance of the train from the eNB. Accounting for transmission capacity variability

with time allows to evidence the ability of the transport protocol to rapidly adapt to time varying

channel conditions even in the presence of packet loss (that can be set in the emulator). The procedure

we have considered to evaluate the protocol performance such as latency and throughput is that used

by OOKLA (https://www.ookla.com/, https://www.speedtest.net/it).

For further testing of transport protocols, we have considered variable bit rate sources sending short

time-separated messages of different lengths. The lengths of the considered messages are:

• 1 kbyte

• 10 kbyte

In the 1 kbyte case the length of the packet is smaller than the typical MTU of the underlying transport

protocol layer (in the TCP case the typical MTU is about 1460 bytes). This case can account for

SIP/SDP and ERTMS/ETCS messages exchange where the entire message can be contained in one

MTU. In the second case the length of the message is larger than MTU and the loss of one IP packet

could lead transport packet to require retransmission.

Packets from the on-board ACS-GW to the trackside ACG-GW are generated on a periodic basis.

4.3 Traffic generation for application/transport protocols analysis

For the analysis of HTTP(S) protocol we have considered the generation of traffic from the server to

the client consisting in the retrieval of one web page from the server (i.e., this is the typical usage of

HTTP(S) protocol):

1 Download of web-pages from a web-server for the testing of HTTP(S) application/transport protocols

based on TCP (CUBIC or BBR) and SCTP transport protocols; the considered web pages have different

dimensions. The first one is the ETSI reference page (https://www.akostest.net/kepler/) of about 1 Mbyte

that contains the main index.htm file of about 17 kbytes and several small files of some kbytes (many files

are below 1 kbyte) of images and text.

2 The second web page is the main page of an Italian daily newspaper that has been downloaded and saved

from the corresponding website. The overall size of the pages is about 5 Mbytes. The main .htm file is of

580 kbytes and the other several short files whose sizes varies from few kbytes to hundreds of kbytes. The

download of web page consists in downloading the main htm file and all the associated files to the web

page.

The snapshots of the two web pages i.e., the ETSI page and the Newspaper page are depicted in

Figure 3 and Figure 4.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://www.ookla.com/
https://www.speedtest.net/it
https://www.akostest.net/kepler/

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

25 | 79

Figure 3. Snapshot of the Kepler ETSI reference HTML page to be used for testing HTTP(S)

protocols.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

26 | 79

Figure 4. Snapshot of the newspaper reference HTML page to be used for testing HTTP(S) protocols.

Figure 4 is the snapshot of the Newspaper HTML page. The page contains a lot of pictures of variable

size (from 1 kbyte to hundreds of kbytes), text files, javascript files, html files.

For the download of each file in the web-page (e.g., images, html files, text files, javascript and json

files etc.) a new HTTP(S) connection was opened and successively closed after successful file

download.

For FTP(S) application/transport protocol over TCP (CUBIC or BBR) testing we have considered the

download of data files of different sizes. The sizes of the files vary from 500 kbytes, 1 Mbytes and

2Mbytes.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

27 | 79

4.4 Performance parameters considered for performance assessment

From results in D.3.4 the performance parameters that have been considered for assessment of

transport and application/transport protocols are indicated in the following list:

1. Achievable throughput (TH) at the receiver side. The following statistics have been considered:

a. The TH evaluated over the total transmission time i.e.

𝑇𝐻 =
Total Transmitted data

Entire duration of transmission

b. The cumulative distribution function (cdf) of TH; this is obtained after repeating emulation

several times (i.e., up to 100 repetitions) under the same operating conditions i.e., mean of

latency and packet loss and for varying available transmission capacity

c. Statistics of the total transmission time and the statistics of TH

2. In the case of application/transport protocol assessment we have considered the statistics of the

download time of the single web page (HTTP(S)) and the file download time (FTP(S)) such as the

CDF (Cumulative Distribution Function) and its average.

3. In the case of short message transmission, the cdf of the transmission delay has been evaluated for the

variable lengths of the transmitted messages.

All data have been collected considering different operating scenario conditions including (randomly

varying) one-way latency around the mean of 25, 50 and 150 ms (the mean round trip time is twice

the average single link latency). One-way latency has been varied of ±5ms around the mean in the

25ms and 50ms cases while variation has been increased to ±10ms in the case of 150ms mean.

Variable one way packet loss, 0, 0.1,0.3,0.5, 1.0, 2.5 has been included in emulation.

Note: for enabling TLS layer we have first created a private certification authority to authenticate

client and server. The CA certificate is ca-crt.pem. Then we have generated the public and private

key and the authenticated certificates for the client (e.g., client1-crt.pem, client1-key and client1-

csr.pem) and for the server (server-crt.pem, server-key and server-csr.pem). These files are provided

to the client and to the server to enable TLS operations during emulation run. The openSSL library

has been used for this purpose.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

28 | 79

5. QUIC transport protocol analysis

QUIC is a general-purpose transport layer network protocol initially designed at Google,

implemented, and deployed in 2012, announced publicly in 2013 as experimentation broadened, and

described at an IETF meeting. Google suggested this as a user-level protocol running over UDP

instead of TCP, thus removing the necessity for the TCP protocol's initial handshake function. It runs

its encryption scheme, which is comparable to TLS, combines link establishment and key agreement

into 1 RTT only.

Unlike what happens with TCP, the QUIC protocol allows communications only in encrypted form.

Since un-encrypted communication forms in QUIC are forbidden by design, privacy and security are

inherently part of QUIC data transfers. This is important for cybersecurity but it may also represent

a useless overhead when encryption is not strictly required. But the real breakthrough of QUIC

consists in the time required to establish a secure connection when compared to TCP + TLS since the

overhead during connection setup is reduced, see Deliverable 3.1 in [5].

5.1 Current status of QUIC development and deployment

The IETF started to work on QUIC not from scratch. In 2012, Google designed its own version of

QUIC and then deployed it both in its popular Chrome browser and most of its services, including

YouTube and search. This allowed them to observe the protocol in action and tweak its design before

submitting it to the IETF for consideration in 2016. The IETF QUIC Working Group took Google’s

documents as input, and has created a set of drafts that used them as a starting point.

After IETF several aspects of the protocol have been changed. The biggest change is in how

encryption is negotiated. Google QUIC's bespoke encryption handshake was new to many, whereas

Transport Layer Security (TLS) is more widely understood, has more features, and is much more

widely supported in both implementations, and deployment. Considering the investment the

community has in TLS research, security analysis, implementation, and deployment, the QUIC

Working Group was chartered to use it as the basis of encryption in QUIC. In this case, when the

QUIC handshake starts, the TLS handshake takes place inside of the QUIC frames, so that the peers

can authenticate each other and derive session keys for encryption. Once that takes place, those keys

are used to encrypt the QUIC frames. QUIC also has unidirectional as well as bidirectional streams,

to aid in composing different types of applications on it.

HTTP over QUIC has changed as well. Besides explicitly separating it out into a separate document,

Google's QUIC used HTTP/2's header compression scheme, HPACK. However, HPACK dictionaries

track their state by assuming that ordering of messages on different streams is guaranteed by TCP–

something that QUIC doesn't provide. So, we've designed a new, QUIC-specific header compression

scheme, QPACK.

There are few downsides to the QUIC protocol. It improves web communications and reduces

latency, but it's still in its experimental stages. It's not widely adopted by other websites or web

servers, nor is it supported by cybersecurity tools such as firewalls [6]. Currently supported QUIC

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://blog.chromium.org/2013/06/experimenting-with-quic.html
https://datatracker.ietf.org/doc/draft-tsvwg-quic-protocol/
https://datatracker.ietf.org/wg/quic/about/
https://tools.ietf.org/html/draft-ietf-quic-transport-16#section-2
https://datatracker.ietf.org/doc/draft-ietf-quic-http/
https://datatracker.ietf.org/doc/draft-ietf-quic-qpack/

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

29 | 79

versions are v1, Internet-Draft versions 29, and 27; and the older “Google” QUIC versions Q043,

Q046, an Q050. Firewalls pass HTTP and HTTPS traffic through a web protection module, which

performs malware scanning. But what happens if the connection is made via QUIC? Well, the browser

and supporting web servers do recognize it as a QUIC connection, but the device you are browsing

on may not. It treats it like simple UDP traffic, which doesn’t get sent to your firewall’s web

protection module. The Official IETF document of QUIC is still an Internet Draft.

5.2 QUIC available implementations

5.2.1 Python Aioquic library

Aioquic is the python library for the QUIC network protocol in Python. We have started our

investigations considering the Aioquic library. This library implements a QUIC protocol stack based

on the the New Reno congestion controller and as shown in the following this may lead to reduced

QUIC performance when compared to TCP using BBR congestion control. Unfortunately, it is not

easy to change the congestion control algorithm in Aioquic without re-writing many parts of the

available python source code. It is out of the scope of AB4Rail project to extend aioquic library to

include BBR or whatever other congestion control strategy. Aioquic features a minimal TLS v1.3

implementation, a QUIC stack and an HTTP/3 stack. QUIC was standardised in RFC 9000 RFC 9001

[7] [8], but HTTP/3 standardisation is still ongoing. aioquic closely tracks the specification drafts and

is regularly tested for interoperability against other QUIC implementations.

For this reason in our investigation, we have also considered other (development) QUIC libraries

which are freely available on the Internet. The most important seems to be LS-QUIC. It is written in

C and implements QUIC protocol using Cubic and BBR congestion algorithms.

5.2.2 LS-QUIC library

LiteSpeed QUIC (LSQUIC) Library is an open-source implementation of QUIC and HTTP/3

functionality for servers and clients. LSQUIC is: fast, flexible and (very important) production-ready.

Currently supported QUIC versions are v1, Internet-Draft versions 29, and 27; and the older “Google”

QUIC versions Q043, Q046, an Q050. It should be not very difficult (in principle) to embed LS-

QUIC into products using common network programming. LS-QUIC does not use sockets to receive

and send packets; that is handled by the user-supplied callbacks. The library also does not mandate

the use of any particular event loop. Instead, it has functions to help the user schedule events.

The various callbacks and settings are supplied to the engine constructor. LS-QUIC keeps QUIC

connections in several data structures in order to process them efficiently. Connections that need

processing are kept in two priority queues: one holds connections that are ready to be processed (or

“ticked”) and the other orders connections by their next timer value. As a result, no connection is

processed needlessly. For more detail the reader is referred to [9].

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://nordvpn.com/blog/https-vs-vpn/

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

30 | 79

For our purposes we have used the demo programs (with many options that can be set) provided by

LS-QUIC authors that implement client and server software to:

a. Test and evaluate performance of QUIC protocol for data transfer (i.e., QUIC operations as basic

transport protocol);

b. Test and evaluate QUIC performance for HTTP/3 data transfer (i.e., QUIC supporting HTTP data

transfer).

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

31 | 79

6. Performance Results

In this section we discuss and analyze the results obtained from emulation for the considered transport

and application protocols. We reported also results for secure version of the HTTP and FTP.

Moreover, we considered the delivery of short messages.

Results are organized in three main subsections:
1. Results for transport layer protocols

2. Results for application layer protocols, and

3. Results for short message delivery

For each of them we also provide an analysis and some comments on the results.

6.1 Secure versions of the transport protocols

In this section we considered the following transport protocols: TCP-CUBIC, TCP-BBR, QUIC,

SCTP and LS-QUIC. As outlined in the previous Section performance are obtained considering the

transfer of blocks of data of variable length ranging from 500 kBytes to 2 Mbytes. This method of

assessing performance of transport protocol is commonly used in the real networks to measure

performance of the link in real time.

In Figure 5 we reported the average Throughput as a function of the channel latency for the ideal case

(PL=0%) in (a) and for a packet loss of 1% in (b). TCP-CUBIC and TCP-BBR show similar

performance (slightly worst for CUBIC in case of PL=1%), having from approximately 2 Mbit/s for

25 ms to 1 Mbit/s for 150 ms. SCTP has the worst performance in all cases (in terms of packet loss

and channel latency).

QUIC has the best performance in ideal case and for low channel latencies (25 ms) but it rapidly

degrades showing lower performance than SCTP for latency of 150 ms. This is due to the available

Python Aioquic software implementation which adopts the congestion control algorithm of New

Reno type. On the contrary, LS-QUIC, which implements an adaptive congestion control algorithm,

properly selecting BBR or CUBIC, overperforms the other transport protocols. Moreover, as in the

case of TCP, since LS-QUIC adopts BBR, QUIC performance is slightly dependent by the packet

loss experienced in the communication channel, showing performance in the ideal and PL=1% cases

which are close. These results, once again, evidence the importance of the proper selection of the

congestion control algorithm in the transport protocol (secure or not secure) to achieve performance.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

32 | 79

Figure 5. Average Throughput vs channel latency for: (a) PL=0% (ideal case) and (b) PL=1%.

(a)

(b)

In Figure 6, the average Throughput is reported as a function of the packet loss variation in the

communication channel. We considered two channel latency: 25 ms in Figure 6a and 150 ms in Figure

6b. TCP-BBR and LS-QUIC show the best performance as they are slightly dependent by the packet

loss both for low latency and higher latency. This is due to the BBR congestion control algorithm

adopted in both transport protocols. TCP-CUBIC has a good behavior (i.e., similar to that of TCP-

BBR) for low packet loss values but it worsens for higher packet loss. The SCTP has lower

performance with respect to TCP-BBR and TCP-CUBIC in all cases (packet loss and latency).

Instead, QUIC provides the best performance for low latency and low packet loss (Aioquic and LS-

QUIC), while QUIC (aioquic) sensibly degrades when latency increases. Instead, LS-QUIC

outperforms other protocols. This behavior is mainly due to the selected implementation of the

congestion control algorithm. In particular, for QUIC, the Aioquic adopts New Reno congestion

control algorithm and for latency of 150 ms the throughput is lower than SCTP. Instead, LS-QUIC

adopts BBR and, depending on the estimated RTT, LS-QUIC can adaptively switch to Cubic.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

33 | 79

Figure 6. Average Throughput vs packet loss for (a) channel latency = 25 ms and (b) channel

latency = 150 ms.

(a)

(b)

In Figure 7 we reported the average Throughput as a function of the transmitted file for a channel

latency of 25 ms. We considered two packet loss: 0% (ideal) in Figure 7a and 1% in Figure 7b.

As for the other plots, QUIC outperforms the other transport protocols in case of ideal transmission

(i.e., PL=0%) but it degrades under the experienced Throughput of TCP-BBR, TCP-CUBIC and LS-

QUIC for PL=1%. In both cases, SCTP has the lowest Throughput on average as also indicated in

Del. 3.4 [1].

Figure 7. Average Throughput vs file size for a channel latency of 25 ms and for (a) PL=0% (ideal

case) and (b) PL=1%.

(a)

(b)

Finally, in Figure 8 we reported the Cumulative Distribution Functions (CDFs) for a latency of 25 ms

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

34 | 79

in Figure 8a and a latency of 150 ms in Figure 8b. For all considered transport protocols the ideal

transmission case (PL=0%) has a higher Throughput. This phenomenon is more evident in case of

higher latency. In this case, LS-CUBIC has the best behavior with respect to the others, while TCP-

BBR and TCP-CUBIC experience a similar Throughput. Then, SCTP and QUIC (Aioquic) show the

worst performance and this is due to the implemented congestion control algorithm.

Figure 8. CDF of the throughput TH for transport protocols for ideal case (PL=0%, colored curves)

and PL=1% (black curves): latency = 25 ms (a) and latency = 150 ms (b).

(a)

(b)

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

35 | 79

6.2 Application protocols

In this section we consider and we analyze the performance of the two most popular application

protocols and their secure versions: HTTP, HTTPS, FTP and FTPS. Performance results are reported

in the following four subsections, respectively. Differently from the case of transport protocols in this

case we considered as main performance parameter the download time. In the analysis, we evaluated

the download of a webpage of a file with different sizes. The SSH File Transfer Protocol (SFTP),

which adopts Secure Sockets Layer (SSL) as secure layer has been gradually replaced with the FTPS

adopting TLS, which has been considered in Task 3.5 activities. In the following results have been

obtained TLS v1.3.

6.2.1 HTTP

For simple HTTP we evaluated the performance of HTTP stacked over one of the following transport

protocols: TCP-CUBIC, TCP-BBR and SCTP. For the moment, secure layer is not considered. For

analysis purposes we have implemented the client application running on the on-board user terminal

invoking the download of a webpage from a remote server. The downloading of a webpage involves

the sequential download of several files including the reference web page (i.e., the first page download

after the request e.g., the typical index.htm page) and all the files (images, text, javascript, etc.) which

are indicated in the first downloaded page. Typically, one browser opens more simultaneous TCP

connections to speed up the download. In our case we have preferred to consider only one TCP or

QUIC connection at time so to have a clear picture of the application transport protocol performance

in the case of a transmission channel where the available transmission capacity varies with time. In

fact, we assume the user terminal is on-board moving from Rome to Florence in the mainline. The

impairments of the wireless channel as seen at IP layer vary in accordance with the train mobility

pattern (i.e., the train-speed vs time profile as indicated in Del. 3.4) and the radio cell coverage.

For this analysis we considered two types of webpages:

• The ETSI webpage – this is a test page issued by ETSI to test applications running over mobile

devices;

• The webpage of an (Italian) daily newspaper available on the Internet.

In Figure 9 we indicate the Download Time (DT) required to download the two considered webpages.

The DT depends on the channel latency ranging from 25 ms to 150 ms and increases with packet loss.

The ideal case (i.e., the reference case) obtained for PL=0%, is reported in solid lines while the case

corresponding to PL=1%, is indicated in dashed lines. In Figure 9a we show the DT of the ETSI page,

while in Figure 9b it is reported the NEWSPAPER webpage. As expected for all transport protocols

the DT increases as the channel latency increases and for higher packet loss. Moreover, the

NEWSPAPER page experiences a higher DT with respect to the ETSI page due to larger amount of

data to be transferred by the server to the user terminal. In both cases, TCP-CUBIC and TCP-BBR

have very similar performance showing a DT ranging between 10 s and 50 s for the ETSI page and

between 38 s and 2m15s for NEWSPAPER page. SCTP shows the worst performance, which further

degrades with PL = 1%.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

36 | 79

Figure 9. Average Download Time vs channel latency for PL=0% (ideal case) and PL=1%: (a) ETSI

page; (b) NEWSPAPER page.

(a)

(b)

In Figure 10 we reported the Download Time of the two webpages (ETSI in Figure 10a and

NEWSPAPER in Figure 10b) as a function of packet loss. We also considered two values for the

latencies i.e., 25 ms (colored lines) and 150 ms (black lines). Even in this case, TCP-CUBIC and

TCP-BBR have similar performance and they do not show a significant degradation in case of the

increase of the packet loss having a DT between 10 s and 15 s (for ETSI page) and between 38 s and

52 s (for NEWSPAPER page) for low channel latency (i.e., 25 ms). In case of higher channel latency

(i.e., 150 ms) they experience a higher DT but the degradation with the increase of packet loss is not

so marked. Even in this case, SCTP shows the worst performance, which degrades sensitively from

ideal case (PL=0%) to PL=5% passing from 1’13” to 1’53” (ETSI page) and from 3’22” to 5’48”

(NEWSPAPER page).

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

37 | 79

Figure 10. Average Download Time vs packet loss for a channel latency = 25 ms (colored curves)

and a channel latency = 150 ms (black curves): ETSI page (a), NEWSPAPER page (b).

(a)

(b)

In Figure 11 and in Figure 12 we reported the CDF of the Download Time for TCP-CUBIC, TCP-

BBR and SCTP for the two webpages for low channel latency (i.e., 25 ms) and high channel latency

(i.e., 150 ms), respectively. Moreover, we reported the ideal case (i.e., PL=0%, reported in colored

lines) and PL=1%, reported in black lines.

The CDF confirms the behavior of the average DT reported in Figure 9 and Figure 10 for the three

transport protocols. CDFs give a higher sensitiveness to the performance for each measured DT.

Figure 11. CDF of the download time for HTTP for latency = 25 ms and for ideal case (PL=0%,

colored curves) and PL=1% (black curves): ETSI page (a) and NEWSPAPER page (b).

(a)

(b)

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

38 | 79

Figure 12. CDF of the download time for HTTP for latency = 150 ms and for ideal case (PL=0%,

colored curves) and PL=1% (black curves): ETSI page (a) and NEWSPAPER page (b).

(a)

(b)

6.2.2 HTTPS

In this subsection we considered the transmission of two webpages (the ETSI and the NEWSPAPER

pages), but in this case we used the HTTPS application protocol. Then, we considered the transport

protocols implementing also the TLS for securing their data transmission between the server and the

client: TCP-CUBIC, TCP-BBR, SCTP and LS-QUIC.

In Figure 13 it is reported the Download Time (DT) required to download all the considered webpage.

The DT is as a function of the channel latency ranging from 25 ms to 150 ms and for two packet

losses: ideal case (i.e., PL=0%, reported in solid lines) and PL=1%, reported in dashed lines. In Figure

13a it is reported the DT of the ETSI page, while in Figure 13b it is reported the NEWSPAPER

webpage. Also in this case, as expected for all transport protocols the DT increases with the channel

latency increases and with packet loss. Moreover, the NEWSPAPER page experiences a higher DT

with respect to the ETSI page due to its larger amount of data to be transferred by the server to the

user terminal.

TCP-CUBIC and TCP-BBR have very similar performance. They do not show any big variation with

respect to the non-secure cases in Figure 9a and in Figure 9b. With HTTPS for TCP-CUBIC and

TCP-BBR the DT ranges between 15 s and 70 s for the ETSI page and between 46 s and 2 min. 45 s

for NEWSPAPER page.

Concerning the LS-CUBIC, it presents higher performance with respect to TCP (both CUBIC and

BBR versions), more marked for a channel latency of 150 ms, showing in this case a value of 46 s

(ETSI page) and 1 min 52 s (NEWSPAPER page). Moreover, its average DT is slightly affected by

the packet loss.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

39 | 79

Figure 13. Average Download Time vs channel latency for: (a) PL=0% (ideal case) and (b) PL=1%.

(a)

(b)

In Figure 14 we reported the Download Time of the two webpages (ETSI in Figure 14a and

NEWSPAPER in Figure 14b) as a function of the packet loss. We also considered two latencies:

25 ms (colored lines) and 150 ms (black lines). All three application protocols give similar

performance for low latency, even if LS-QUIC presents slightly variable performance when the

downloaded page is reduced.

In case of latency = 150 ms, LS-QUIC outperforms TCP-CUBIC and TCP-BBR experiencing a

reduction of DT between 20 s and 30 s for the ETSI page and between 48 s and 110 s for the

NEWSPAPER page. This fact can be explained by remembering that QUIC has been explicitly

optimized by Google to speed up download of web-pages (i.e., the HTTP/3 has also been introduced

with QUIC). To this purpose the QUIC considers UDP protocols to avoid TCP overhead and, most

important, reduces the time required by the TLS to exchange the authentication information between

client server. The reduction of this time is of importance especially in the case of communication

links characterized by large latency.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

40 | 79

Figure 14. Average Download Time vs packet loss for a channel latency = 25 ms (colored curves)

and a channel latency = 150 ms (black curves): ETSI page (a), NEWSPAPER page (b).

(a)

(b)

In Figure 15 and in Figure 16 we have reported the CDF of the Download Time for TCP-CUBIC,

TCP-BBR and LS-QUIC for the two webpages in low and high channel latency (i.e., 25 ms and

150 ms), respectively. Moreover, we have reported the reference ideal case (i.e., PL=0%, in colored

lines) and PL=1%, (black lines).

For latency of 25 ms and for the newspaper webpage, LS-QUIC has similar performance of TCP-

CUBIC and TCP-BBR. In case of small web page (i.e., the ETSI page), LS-QUIC outperforms the

other transport protocols in the ideal channel case, while for large latencies and PL=1% the LS-QUIC

implementation may have some un-fair behavior which is related to the time interval of the probe

used to estimate the RTT which is typically set to 200ms and, as in our case, it is lower than the true

(average) RTT of 300ms (i.e., the average RTT is about two times the latency of 150ms). This fact

has been observed experimentally in [10] and it is related to the implementation of BBR in the LS-

QUIC. Some modifications to LS-QUIC implementation are currently under study for solving this

problem even considering an evolution of BBR congestion control. This implementation issue leads

to a loss of performance of QUIC as shown in Figure 16 the DT is greater than about 3 s with respect

to TCP-CUBIC and TCP-BBR.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

41 | 79

Figure 15. CDF of the download time for HTTP for latency = 25 ms and for ideal case (PL=0%,

colored curves) and PL=1% (black curves): ETSI page (a) and NEWSPAPER page (b).

(a)

(b)

Figure 16. CDF of the download time for HTTP for latency = 150 ms and for ideal case (PL=0%,

colored curves) and PL=1% (black curves): ETSI page (a) and NEWSPAPER page (b).

(a)

(b)

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

42 | 79

6.2.3 FTP

In this subsection, we reported the Download Time required by a client in a train to download a file

from a remote server. for this analysis we considered four files with different sizes of 0.5 Mbyte,

1 Mbyte, 2 Mbyte and 4 Mbyte. We considered in this analysis only TCP-CUBIC and TCP-BBR,

that are currently adopted for the FTP service.

In Figure 17 it is reported the Download Time (DT) as a function of the channel latency ranging from

25 ms to 150 ms and for two packet losses: ideal case (i.e., PL=0%, reported in solid lines) and

PL=1%, reported in dashed lines. In Figure 17a it is reported the DT of the smallest file (i.e.,

500 kbyte), while in Figure 17b it is reported the biggest file (i.e., 4 Mbyte). Performance are similar

and as expected for both transport protocols the DT increases as the channel latency increases and for

higher packet loss. From Figure 17 we can also note that similar performance are obtained in ideal

and with a channel with a packet loss of 1% in case of low channel latency (i.e., 25 ms). On the

contrary the degradation from ideal to a lossy channel in case of latency of 150 ms, passing from 4 s

to about 4.7 s for the small size file and from 17 s to about 30 s for a large size file.

Figure 17. Average Download Time vs channel latency for PL=0% (ideal case, solid lines) and

PL=1% (dashed lines): file size = 0.5 MBYTE (a); file size = 4 MBYTE (b).

(a)

(b)

In Figure 18 we reported the Download Time of the two files (500 kbyte) in Figure 18a and 4 Mbyte

in Figure 18b) as a function of the packet loss. We also considered two latencies: 25 ms (colored

lines) and 150 ms (black lines). Also in this case, TCP-CUBIC and TCP-BBR have similar

performance. They do not particularly degrade in case of the increase of the packet loss having a DT

between 2.5 s and 3 s (for 0.5 Mbyte file) and between 17 s and 27 s (for 4 Mbyte file) for low channel

latency (i.e., 25 ms). In case of higher channel latency (i.e., 150 ms) they experience a higher DT.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

43 | 79

Figure 18. Average Download Time vs packet loss for a channel latency = 25 ms (colored curves)

and a channel latency = 150 ms (black curves): file size = 0.5 MBYTE (a);

file size = 4 MBYTE (b).

(a)

(b)

In Figure 19 we reported the Download Time as a function of the file size for latency = 25 ms (Figure

19a) and latency = 150 ms (Figure 19b), for two packet losses: ideal case (i.e., PL=0%, reported in

solid lines) and PL=1% (lossy channel), reported in dashed lines. TCP-CUBIC and TCP-BBR have

similar performance. As expected, the DT increases as the file size increases. However, for latency =

25 ms ideal and lossy channel show the same behavior slightly depending on the file size. In case of

latency = 150 ms, the degradation from an ideal to a lossy channel increase as the file size increases

passing from DT = 17 s to DT = 30 s for 4 Mbyte.

Figure 19. Average Download Time vs file size for PL=0% (ideal case, solid lines) and PL=1%

(dashed lines): channel latency of 25 ms (a) and channel latency of 150 ms (b).

(a)

(b)

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

44 | 79

In Figure 20 and in Figure 21, we reported the CDF of the Download Time for TCP-CUBIC and

TCP-BBR for the file of 500 kbyte (Figure 20a and Figure 21a) and the file of 4 Mbyte (Figure 20b

and Figure 21b) for low channel latency (i.e., 25 ms) and high channel latency (i.e., 150 ms),

respectively. Moreover, we reported the ideal case (i.e., PL=0%, reported in colored lines) and

PL=1%, reported in black lines.

Higher Download Time are obtained in case of latency 150 ms lossy channel (PL = 1%) with respect

to an ideal channel (PL = 0%).

Figure 20. CDF of the download time for FTP for latency = 25 ms and for ideal case (PL=0%,

colored curves) and PL=1% (black curves): file size = 0.5 MBYTE (a); file size = 4 MBYTE (b).

(a)

(b)

Figure 21. CDF of the download time for FTP for latency = 150 ms and for ideal case (PL=0%,

colored curves) and PL=1% (black curves): file size = 0.5 MBYTE (a); file size = 4 MBYTE (b).

(a)

(b)

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

45 | 79

6.2.4 FTPS

In this subsection, we reported the Download Time required by a client in a train to download a file

from a remote server using the FTPS application protocol. For this analysis we considered four files

with different sizes of 0.5 Mbyte, 1 Mbyte, 2 Mbyte and 4 Mbyte. We considered in this analysis only

TCP-CUBIC and TCP-BBR. To the best of authors’ knowledge, at the moment of this writing there

are no software implementations of FTP over QUIC nor it is envisaged to use QUIC for FTP

transmissions. However, performance of FTP over QUIC should be not so different from the

performance achieved considering TCP with BBR and TLS for transferring large files (see next). In

fact, as shown in Figures 6-8 LS-QUIC and TCP with BBR almost achieve similar performance. In

addition, it should be remarked that the main objective of the FTP layer, being an application protocol,

is to implement additional functionalities allowing the application above the FTP to better manage

the file transfer i.e., control of errors during the file transfer, the possibility of resuming transfer

starting from the last byte that has been correctly received etc. Apart of the overhead introduced by

the FTP layer, the transmission of files as well as the achievable throughput/file transfer rate is

regulated by the operations of the underlying transport protocol.

In Figure 22 it is reported the Download Time (DT) as a function of the channel latency ranging from

25 ms to 150 ms and for two packet losses: ideal case (i.e., PL=0%, reported in solid lines) and

PL=1%, reported in dashed lines. In Figure 22a it is reported the DT of the smallest file (i.e.,

500 kbyte), while in Figure 22b it is reported the biggest file (i.e., 4 Mbyte). Performance of the two

TCP versions are similar and as expected for both transport protocols the DT increases as the channel

latency increases and for higher packet loss. From Figure 22 we can also note that similar performance

are obtained in ideal and with a channel with a packet loss of 1% in case of low channel latency (i.e.,

25 ms). On the contrary the degradation from ideal to a lossy channel in case of latency of 150 ms,

passing from 4 s to about 4.7 s for the small size file and from 17 s to about 30 s for a large size file.

Comparing them with the classical FTP application transfer protocol, it is noted a small increase of

the DT due to the TLS overhead inserted in the packets of the secured FTP version and the additional

time required for initial TLS handshaking that can be more marked with the increase of channel

latency. However, in the case of large file transfer this additional time can be negligible with respect

to the overall time required for the file download. As an example, the DT increases from 3.9 s to 4.6 s

for latency = 150 ms, lossless channel and file size = 500 kbyte.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

46 | 79

Figure 22. Average Download Time vs channel latency for PL=0% (ideal case, solid lines) and

PL=1% (dashed lines): file size = 0.5 MBYTE (a); file size = 4 MBYTE (b).

(a)

(b)

In Figure 23 we reported the Download Time of the two files (500 kbyte in Figure 23a and 4 Mbyte

in Figure 23b) as a function of the packet loss. We also considered two latencies: 25 ms (colored

lines) and 150 ms (black lines). Also in this case, TCP-CUBIC and TCP-BBR have similar

performance. Considerations for this behavior are similar to those concerning the classical FTP case.

Figure 23. Average Download Time vs packet loss for a channel latency = 25 ms (colored curves)

and a channel latency = 150 ms (black curves): file size = 0.5 MBYTE (a);

file size = 4 MBYTE (b).

(a)

(b)

In Figure 24 we reported the Download Time as a function of the file size for latency = 25 ms (Figure

24a) and latency = 150 ms (Figure 24b), for two packet losses: ideal case (i.e., PL=0%, reported in

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

47 | 79

solid lines) and PL=1% (lossy channel), reported in dashed lines. TCP-CUBIC and TCP-BBR have

similar performance. As expected, the DT increases as the file size increases. However, for latency =

25 ms ideal and lossy channel show the same behavior slightly depending on the file size. In case of

latency = 150 ms, the degradation from an ideal to a lossy channel increases as the file size increases

passing from DT = 17 s to DT = 30 s for 4 Mbyte.

FTPS slightly has worsen performance with respect to FTP above all for file size = 4 Mbyte, for

latency = 150 ms and PL=1% passing from 30 s (Figure 19b) to 32 s (Figure 24b).

Figure 24. Average Download Time vs file size for PL=0% (ideal case, solid lines) and PL=1%

(dashed lines): channel latency of 25 ms (a) and channel latency of 150 ms (b).

(a)

(b)

In Figure 25 and in Figure 26, we reported the CDF of the Download Time of FTPS for TCP-CUBIC

and TCP-BBR for the file of 500 kBYTE (Figure 25a and Figure 26a) and the file of 4 MBYTE

(Figure 25b and Figure 26b) for low channel latency (i.e., 25 ms) and high channel latency (i.e.,

150 ms), respectively. Moreover, we reported the ideal case (i.e., PL=0%, reported in colored lines)

and PL=1%, reported in black lines. Higher DTs are obtained in case of latency 150 ms lossy channel

(PL = 1%) with respect to an ideal channel (PL = 0%).

TCP-CUBIC and TCP-BBR show similar performance. Anyway, also in this case FTPS has a small

degradation with respect to classical FTP mainly due to additional TLS overhead. As an example, we

can refer to the starting point of Figure 26a for FTPS, which is equal to 3.5 s, and it is 0.5s higher

than the starting point of the corresponding FTP case (see Figure 21a), which starts at 3 s.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

48 | 79

Figure 25. CDF of the download time for FTP for latency = 25 ms and for ideal case (PL=0%,

colored curves) and PL=1% (black curves): file size = 0.5 MBYTE (a); file size = 4 MBYTE (b).

(a)

(b)

Figure 26. CDF of the download time for FTP for latency = 150 ms and for ideal case (PL=0%,

colored curves) and PL=1% (black curves): file size = 0.5 MBYTE (a); file size = 4 MBYTE (b).

(a)

(b)

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

49 | 79

6.3 Periodic Short Messages Delivery

In this section we analyze the performance of the considered transport protocols in the case of delivery

of periodic short messages. This study case is of great importance since it can be associated to the

class of ACS services concerning signaling using short messages as in the ETRMS/ETCS case or

SIP/SDP. We considered two lengths of the messages to be sent: 1 kbyte and 10 kbyte. The following

secure versions of transport protocols are considered: TCP-CUBIC, TCP-BBR, SCTP, QUIC with

Aioquic and LS-QUIC implementations.

The emulator developed in Task 3.3. is used for performance assessment (see Figure 1). We assume

the transmitting application is on board and transmit periodic (short) messages to a remote server.

One new message is transmitted every 3 seconds. The connection from the terminal to the server is

opened before starting transmission and closed when message transmission ends. To evaluate

performance we have considered two different message delays: the first delay includes the time

interval required for the initial TLS handshake carried out before message transmission and the time

interval between the transmission and reception of the message after the TLS handshake is completed.

Obviously, by definition the first time interval is the sum of the TLS handshake time and that required

for message reception. This second time interval is of importance to assess the performance of

message transmission when non-secure version of the transport protocols are used since in this case

TLS handshake is not present.

6.3.1 Message Delay including TLS handshaking time

In Figure 27 it is reported the average Message Delay (MD) required to send the short messages. As

expected, the overall MD is as a function of the channel latency ranging from 25 ms to 150 ms. We

have analyzed MD ecven considering packet loss: ideal case (i.e., PL=0%, reported in solid lines) and

PL=1%, reported in dashed lines. In Figure 27a it is reported the MD of the message of 1 kbyte, while

in Figure 27b it is reported the message of 10 kbyte. As expected for all transport protocols the MD

increases as the channel latency increases as well as the packet loss increases. Obviously, the message

with a greater size takes a larger delay. QUIC outperforms all the other transport protocols for small-

size files and for 10 kbyte-size in case of low latencies (lower than 60 ms), while it has an MD great

then both versions of the TCP for latency = 150 ms. TCP-CUBIC and TCP-BBR have very similar

performance showing a MD ranging between 150 ms and 800 ms for 1 kbyte-file size and between

185 ms and 830 ms for 10 kbyte-file size for a lossless channel. SCTP shows the worst performance,

which further deteriorates for PL = 1%. For QUIC and TCPs performance do not degrade significantly

for the lossy channel with respect to the lossless channel.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

50 | 79

Figure 27. Average Message Delay vs channel latency for PL=0% (ideal case) and PL=1%:

(a) 1 kbyte-file size; (b) 10 kbyte-file size.

(a)

(b)

In Figure 28 we reported the average Message Delay of the two files (1 kbyte-file size in Figure 28a

and 10 kbyte-file size in Figure 28b) as a function of the packet loss. We also considered two

latencies: 25 ms (colored lines) and 150 ms (black lines). TCP-CUBIC, TCP-BBR and QUIC have

similar performance for latency = 25 ms and they do not particularly degrade in case of the increase

of the packet loss having a MD between 140 ms and 220 ms (for 1 kbyte-file size) and between

175 ms and 230 ms (for 10 kbyte-file size). In case of higher channel latency (i.e., 150 ms), QUIC

has a better behavior with respect to TCP-CUBIC and TCP-BBR for 1-kbyte file, while it experiences

a higher MD for 10-kbyte file.

Also in this case, SCTP shows the worst performance, which degrades sensitively from ideal case

(PL=0%) to PL=5% passing from 195 ms to 850 ms (1 kbyte-file size) and from 300 ms to 970 ms

(10 kbyte-file size) for latency = 25 ms.

Figure 28. Average Message Delay vs packet loss for a channel latency = 25 ms (colored curves)

and a channel latency = 150 ms (black curves): (a) 1 kbyte-file size; (b) 10 kbyte-file size.

(a)

(b)

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

51 | 79

In Figure 29 and in Figure 30 we have reported the CDF of the Message Delay for TCP-CUBIC,

TCP-BBR, SCTP and QUIC of the two file sizes (1 kbyte and 10 kbyte) for low channel latency (i.e.,

25 ms) and high channel latency (i.e., 150 ms), respectively. Moreover, we reported the ideal case

(i.e., PL=0%, reported in colored lines) and PL=1%, reported in black lines.

The CDF confirms the behavior of the average MD reported above for the three transport protocols.

CDFs give a higher sensitiveness to the performance for each measured MD. In fact, it is possible to

note that the MD for TPC-CUBIC and TCP-BBR ranges close to latency = 25 ms (Figure 29a) and

latency = 150 ms (Figure 30a) for 1 kbye case. The packet loss hardly affects their performance due

to the small size of the sent messages. MD increases as the file size increases (see Figure 29b and

Figure 30b).

Figure 29. CDF of the Message Delay of Message delivery service for latency = 25 ms and for ideal

case (PL=0%, colored curves) and PL=1% (black curves):

(a) 1 kbyte-file size; (b) 10 kbyte-file size.

(a)

(b)

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

52 | 79

Figure 30. CDF of the Message Delay of Message delivery service for latency = 150 ms and for

ideal case (PL=0%, colored curves) and PL=1% (black curves):

(a) 1 kbyte-file size; (b) 10 kbyte-file size.

(a)

(b)

For the LS-QUIC case we can observe a bi-modal behavior of the protocol in the case of delay of

150ms and large messages that can lead to a degradation of QUIC performance i.e., an increase of

MD with respect to TCP-BBR with TLS for a percentage of packets. This behavior is not easy to

explain but we should remember that LS-QUIC is set by default to send an RTT probe every 200ms

which is lower than the RTT of about 300ms. Instead, the TCP-BBR send one probe every 8 RTT

(typically). This leads to enqueuing remaining packets to be transmitted packets due to the delay in

remining in the draining phase of BBR (i.e., in the drain status the packet transmission is stopped and

it can restart only after we have received the ACK of the transmitted packets). This can explain the

bimodal behavior of LS-QUIC shown in Figure 30. The un-fair behavior of BBR has been studied in

[10].

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

53 | 79

6.3.2 Message Delay without the TLS negotiation time

In this Section we provide results concerning the MD without including the time interval required for

initial TLS handshaking. As previously outlined, these results can be representative of performance

non-secure protocols even though the results do not include the delay due to protocol initial

synchronization phase. In this case, only results for TCP with BBR and Cubic and SCTP are reported.

In fact, it makes no sense to strip the TLS layer from QUIC.

Figure 31. CDF of the Message Delay of Message delivery service for latency = 25 ms and for ideal

case (PL=0%, colored curves) and PL=1% (black curves):

(a) 1 kbyte-file size; (b) 10 kbyte-file size.

(a)

(b)

Figure 32. CDF of the Message Delay of Message delivery service for latency = 150 ms and for

ideal case (PL=0%, colored curves) and PL=1% (black curves):

(a) 1 kbyte-file size; (b) 10 kbyte-file size.

(a)

(b)

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

54 | 79

As shown in Figure 31 and Figure 32 the absence of TLS handshaking allows to drastically reduce

the MD. In Figure 31 corresponding to latency of 25 ms the minimum MD is 20 ms. This is not a

surprise since it should be remined that latency in the emulator is randomly generated at each iteration

in accordance with a uniform distribution around its mean of 25ms+5ms. Similar considerations apply

to the results indicated in Figure 32 corresponding to different mean latency of 150 ms.

In case of messages of 1 kbyte, TCP-BBR, TCP Cubic and SCTP show similar performance,

independently of the channel latency, while in case of messages of 10 kbyte SCTP degrades with

respect to both versions of the TCP.

6.3.3 Comparison of message delay with and without TLS handshake

In this section we compare the achievable MD for short message transmission in the absence or

presence of TLS negotiation. For brevity, only the CDFs of MD are reported.

In Figure 33a and Figure 33b we reported the CDF of the Message Delay for TCP-CUBIC, TCP-

BBR, SCTP, QUIC and LS-QUIC for low channel latency (i.e., 25 ms), and for the file size of 1 kbyte,

and the file size of 10 kbyte, respectively. Moreover, we reported the CDF of MD, which includes

the TLS setup time for each message (black lines) and the simplified case, where TLS has not been

included in the setup reported in colored lines. It is evident the increased delay due to the TLS setup.

Note that in case of non-secure transmission (no TLS setup) and for the file size of 1 kbyte, delays

are similar to the channel latency and similar for all transport protocols due to the reduced size of the

file. In case of the file size of 10 kbyte, SCTP without TLS (triangle cyan in Figure 33b) degrades.

Figure 33. CDF of the Message Delay of Message delivery service for latency = 25 ms and for ideal

case (PL=0%), colored curves) and PL=1% (black curves):

(a) 1 kbyte-file size; (b) 10 kbyte-file size.

(a)

(b)

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

55 | 79

Similar considerations can be noted in case of for latency = 150 ms, whose results are reported in

Figure 35 (Figure 35a for 1 kbyte and Figure 35b for 1 kbyte).

Figure 34. CDF of the Message Delay of Message delivery service for latency = 150 ms and for

ideal case (PL=0%, colored curves) and PL=1% (black curves):

(a) 1 kbyte-file size; (b) 10 kbyte-file size.

(a)

(b)

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

56 | 79

7. Analysis of security threats and possible defense techniques

In this section we analyze the security aspects of the considered transport and application protocols

especially when message transmission is considered. The security aspects of the RASTA protocol

have been analyzed in the D3.4 taking results from the available literature. In this Section we are

focusing on TCP, UDP, SCTP even with TLS and QUIC. Usage of transport protocols adopting TLS

allow the application protocols, HTTP and FTP, to transmit data from the source to the destination in

a secure way.

7.1 Most common threats and countermeasures envisaged in message transmissions

The most common threats to be considered in the case of rail applications are reported in the following

list, (from [3]):

• Repetition.

o The attack is performed by storing a packet by the attacker, who transmit it subsequently, thus

giving to the application wrong information (e.g., not updated train position), maybe in different

situation, for example, injecting a message collected when the train is at 250 km/h and replaying

it when the train is at 40 km/h or vice versa;

• Deletion.

o The attacker intercepts a packet and deletes it, leaving the destination without the information

inserted in the packet, for example cancelling the message “immediately stop”;

• Insertion.

o The attacker inserts a message thus providing to the train wrong information, for example allowing

its speed to be 250 km/h in rail slots where it is not safe;

• Re-sequencing.

o The attacker intentionally (or a hardware failure unintentionally) modifies the order of the

messages, thus for example changing the meaning of the information sent by the train to the

remote-control center or vice versa;

• Corruption.

o The message has been modified intentionally or unintentionally, providing the recipient with

wrong information such as speed at 250 km/h is available in the part of the rail;

• Delay.

o Messages are delayed above the maximum allowed delay causing for example train stop due to

missing movement authorization. In this case, the attacker injects a large number of messages

delaying or stopping the service. This can happen also by an overload of the network not able to

dispose all packets.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

57 | 79

• Masquerade.

o An attacker pretends to be an allowed sender or receiver getting access to safety data.

Note that some attacks such as repetition, deletion and corruption can occur also due a hardware

failure.

The most common countermeasures to be considered in the case of rail applications are reported in

the following list, (from [3]):

• Sequence number of packets

o It is a number added to each packet or message inserted by the source and incremented at each

sent message. Of course, transmitter and recipient should agree the first sequence number, the

allowed interval and the incrementation mode.

• Time stamp

o Similarly to the previous field, the value of the time has been added to the message header,

allowing the recipient to know the timeliness of the received message. Sometimes, only the last

significant values of the local clock can be inserted in the message due to the narrowness of the

available bits. This information can be exploit jointly with the sequence number or alone.

Nevertheless, it may be difficult to manage since the clocks in the elements of the network may

significantly differ reducing its effectiveness.

• Time out

o It is defined as the maximum amount of time within two consecutive messages whose exceeding

an error should be assumed in the communication between transmitter and recipient. There are

two main cases. In the first one, the interval between two consecutive messages is measured at the

recipient. Then, if it exceeds the agreed threshold the communication is considered with error. In

the second case, the source transmits a message and it waits for its acknowledgment. In case, it

arrives exceeding the maximum agreed time interval (thus exceeding the threshold) the

communication is considered in timeout and should be resumed.

• Source and destination identifiers

o The header of the message can be provided by the identification of the transmitter or of the

recipient or both in order to be sure to provide the message content to correct (and safety) machine

process.

• Feedback message

o The use of feedback messages such as acknowledgements or messages for handshakes during

initial phase sent by the recipient to the transmitter may improve the safety process or simply

providing a confirmation to have correctly received a message. The missing of this type of

messages can enable the transmitter to take proper actions or countermeasures.

• Identification procedure

o It means defining (or having) a procedure that allows to know that whoever you are

communicating with is actually who you claim to be; the procedure can concern the

sender/recipient identifiers or provide also that the behavior is that it is expected.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

58 | 79

• Safety code

o Due to transmission errors, a safety code under the control of the safety-related process is required

additionally to detect message corruption (i.e., its integrity), caused by air interface of by hardware

failure or other external influences.

• Cryptographic techniques

o The adoption of cryptographic codes can be used to provide confidentiality or integrity or both.

Starting from the above classification of the main threats in a rail environment in [3] it is clearly

outlined that a number of mechanisms should be implemented in the transmission protocol in order

to counter-act the previous threats. One protocol can implement one or more of these mechanisms

that are listed in the following list.

In [3] a specific matrix related to the techniques to provide defenses against the threats envisaged is

reproduced and reported in Table 4.

Table 4: Matrix to report defending technique (in blue) to counteract the security threats (in red) [3].

 Defenses

Threats Sequence

number

Time

stamp

Time-

out

Source

and

destination

identifiers

Feedback

message

Identification

procedure

Safety

code

Cryptography

techniques

Repetition X X

Deletion X

Insertion X X X X

Re-

sequencing

X X

Corruption X X

Delay X X

Masquerade X X X

7.2 Analysis of transport protocols to counteract the security threats

Starting from the indications reported in previous Section, in the following we analyze the considered

transport and application protocols from the security point of view. In particular, by extending the

concepts in [3] we evaluate if the considered transport protocols can counteract one, more or all of

the security threats indicated in Table 4. The considered transport protocols are: TCP, SCTP with and

without TLS, the UDP or better its “QUIC” version.

The analysis of the security aspects of the considered protocols start with a short review of the main

features of the considered protocols. In particular, we analyze the fields inside their header and we

summarize the procedures that are important from the point of view of security. Our main findings

are then summarized in a final Table.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

59 | 79

TCP – short analysis

Before starting with the TCP analysis, it should be noted that for security purposes the selection of

congestion control algorithm is not important. Thus, the following discussion includes both TCP-

BBR and TCP-cubic version, as the header format is the same.

Based on the header format in RFC 793 [11], RFC 5681 [12], RFC 8312 [13], TCP has the following

fields:

a. sequence number,

b. acknowledgment number,

c. source and destination ports (for the identification of the communicating processes),

d. checkSum field.

The CheckSum of the TCP is calculated by taking into account for the content of the TCP Header,

the TCP body and Pseudo IP header. In order to avoid any possible crosslayer (i.e., use at TCP layer

of data only available at IP layer) the fields of the Pseudo IP header (12 bytes) are the IP address of

the source (4 bytes), the IP address of the destination (4 bytes), the TCP segment length (2 bytes), the

transport protocol (stating the type of the protocol used, thus TCP in this case) (1 byte) and a fixed

field of 1 byte. This allows the TCP to avoid any mis-addressing of the segments. Similarly, the

Checksum is even calculated for UDP.

TLS secure layer – short recap

As specified in RFC 5246 [14] and RFC 8446 [15], TLS is a protocol layer aiming of providing a

secure channel between two communicating peers. TLS provides:

1. authentication,

2. confidentiality and

3. integrity

This is achieved through two main components: the handshake protocol and the record protocol. The

only requirement from the underlying (non-secure) transport protocol is a reliable, in-order data

stream delivery. It means that TLS can be applied above the TCP and SCTP but not above the UDP.

Moreover, it is integrated by default on the QUIC protocol to provide these functionalities to UDP

transport layer.

The handshake protocol is used to authenticate the communicating entities, to negotiate cryptographic

modes and parameters, and to establish shared keying material. After parameters and keys have been

agreed through the handshake protocol, the record protocol protects the exchanged traffic between

the two communicating entities. Two 64-bit sequence numbers are used for each record sent or

received and incremented by one periodically. The client is able to know the identity of the server

whom is connecting to and authenticate it, through the TLS handshake. Optionally, the server can

know and authenticate the client identity.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

60 | 79

In order to simplify the handshake procedure, TLS defined two versions: 0-RTT and 1-RTT. The

second one is the handshake adopted for the first time. Then, the client is unable to send protected

application data until it has agreed all parameters and keying materials sent by the server. 0-RTT is

used for a session resume, where some parameters can be retrieved by the previous connection, such

as the last used key. Anyway, in this case (i.e., with 0-RTT handshake) a simpler replay attack can be

applied. Finally, as described in RFC6962 [16] [17], a set of extension values for the CertificateEntry

can be defined in the “extension” format, thus for example providing a mechanism for a server to

send a Signed Certificate Timestamp (SCT). In TLS, certificates may expire or may be no longer

valid.

SCTP protocol

Based on RFC 3286 [18], RFC 4960 [19], RFC 9260 [20] the SCTP implements the following

functionalities.

a. The multi-streaming function provided by SCTP allows to partition data into multiple streams. Each

payload DATA namely “chunk” uses a Transmission Sequence Number for the transmission of

messages and the detection of message loss. In addition, it uses the Stream ID/Stream Sequence

Number pair to determine the sequence of delivery of received data.

b. The received SCTP data “chunks” are acknowledged according to the TCP's Selective ACK procedure,

in order to provide notification of duplicated or missing data chunks.

SCTP implements the flow control and the congestion control based on the TCP functionalities in

RFC 2581 and RFC 5681 [21], [22]. Nevertheless, the application can specify a lifetime for data to

be transmitted in order to properly manage messages that are time-sensitive. Then, the lifetime has

expired and the data has not yet been transmitted, it can be discarded for timeout.

According to RFC 9260 [20] the SCTP format includes the following fields:

• Source and Destination Port Numbers (2 bytes, each), that are used by the receiver in combination

with the source/destination IP addresses to identify the association to which this packet belongs and

to properly forward the packet to the correct application.

• Verification Tag (4 bytes), that is used by the receiver to validate the sender of this packet.

• 32-bit checksum based on Cyclic Redundancy Check (CRC) for protecting SCTP packets against bit

errors and mis-delivery of packets.

Finally, the STCP employs one mechanism to improve security, with respect to TCP and UDP. It is

based on cookies exchanged during the initialization to provide protection against synchronization

attacks. The synchronization attack is implemented in the connection establishment phase. An

attacker sends a massive number of SYN requests to a server in order to establish connections, often

using fake IP addresses. The server responds to the requests with a SYN-ACK message and by

assigning a port for the connection. Since the client IP are fakes, the third message in the establishing

phase is not received, blocking after a bit the server. In SCTP this is overcome by enabling the server

to send a cookie (INIT-ACK) in response to the connection establishment request (INIT message).

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

61 | 79

The cookie is a text file with small blocks of data, containing a hashing (i.e., a Message Authentication

Code, MAC) and other information to establish the connection such as a time stamp and the life span

of the state cookie. In this case the server does not allocate any resource (e.g., port, memory) since it

receives a valid answer to the INIT-ACK, namely COOKIE ECHO, containing the requested

information in the cookie parameters from the previous INIT ACK. Then, the resource allocation is

delayed during association setup until the client's identity can be verified using a cookie exchange

mechanism, thus reducing also the possibility of Denial-of-Service attacks.

UDP protocol

As specified in RFC 768 [23], UDP is very simple transport protocol. Its header format is very simple

and provides the following functionalities:

• Source and destination ports to identify the source and recipient applications, respectively,

• The length of the datagram, including header and payload

• The CheckSum, which implements the same TCP functionalities thus providing mis-delivery of

datagrams.

For these reasons, UDP is not considered alone for the purpose of the document but only jointly with

QUIC, where extra (and important) functionalities are added.

QUIC protocol

The QUIC protocol is described in RFC 9000 [7], RFC 9001 [8], RFC 9002 [24]. QUIC established

a connection between a client and server through a handshake that negotiates the TSL parameters,

thus guaranteeing authentication, confidentiality and integrity. When the handshake is properly

performed, a connection is established (and a connection ID is available). Data are exchanged using

several ordered byte-based streams. Application data are segmented into frames and multiplied in a

single or more than one parallel streams, each one identified by a stream ID. Transmitted packets

have a flexible structure and can aggregate frames belonging to different streams reducing the head-

line-of-blocking. An example of the packet organization is reported in Figure 35.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

62 | 79

Figure 35: Principle of the header format of QUIC taken from [7], [25]

QUIC adopts UDP as transport protocol and as said before it adopts the TLS to provide a secure

connection between endpoints. In Figure 36 it is reported the encapsulation of the QUIC packet,

which is formed by a header and some frames, into the UDP segment.

Figure 36: Example of encapsulation of QUIC packet into an UDP payload [26].

From Figure 35 and Figure 36, QUIC packet is equipped with the sequence number to provide

retransmission and so to guarantee reliability. Each endpoint acknowledges all the packets it receives

and processes. When a connection is established, endpoints agree the value of the parameter

max_idle_timeout. When it is reached, the connection is closed for timing out.

During the connection establishment, the address validation for both endpoints is also guaranteed

since receipt of a packet protected with agreed keys confirms that the client received the Initial packet

from the server.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

63 | 79

7.3 Summary and findings for security in transport protocols

In the following table we summarize the main results that have emerged by the security analysis of

the transport protocols illustrated in the previous Section. For each one of the considered protocols

we have indicated their ability to support the countermeasures required to counteract one, more or all

of the security threats listed in the previous Section.

Table 5: secure functionalities supported by transport protocols to counteract the security threats.

 TCP TCP+TLS SCTP SCTP+TLS UDP QUIC

Sequence

number

Yes Yes Yes No Yes

Time stamp No [RFC6962]

provides a

mechanism for a

server to send a

Signed Certificate

Timestamp (SCT)

No [RFC6962]

provides a

mechanism for a

server to send a

Signed Certificate

Timestamp (SCT)

No No

Time out Yes Both TCP

connection and

TLS certificates

may expire

Yes Both SCTP

connection and TLS

certificates may

expire

No Yes, after

max_idle_timeo

ut the QUIC

connection is

silenced

Source and

destination

identifiers

Yes It uses the ID

ports of the TCP

Yes It uses the ID ports

of the SCTP

Yes Yes, it uses

tuple of IP

version, IP

address and

UDP port

number that

represents one

end of a

network path.

Feedback

message

Yes, ACKs

are required

Yes, TLS uses

feedback

messages of TCP

Yes Yes, TLS uses

feedback messages

of SCTP

No Yes, endpoints

acknowledge all

packets they

receive and

process.

Identificatio

n procedure

No Yes, by providing

authentication.

After completing

the TLS

handshake, the

client will have

learned and

authenticated an

identity for the

server, and the

server is

optionally able to

learn and

authenticate an

identity for the

No, but

further

protection

mechanism

s are

implement

ed during

the

initializatio

n phase.

Yes, by providing

authentication.

After completing

the TLS handshake,

the client will have

learned and

authenticated an

identity for the

server, and the

server is optionally

able to learn and

authenticate an

identity for the

client

No It uses TLS

functionalities.

Moreover,

address

validation for

both endpoints

during the

handshake

phase.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

64 | 79

client

Safety code Only on

CheckSum

field

TLS uses the

CheckSum of

TCP

Validation

tag and 4-

bytes

checksum

 Only

on

CheckS

um

field

It uses the

CheckSum field

of UDP

Cryptogra-

phic

techniques

No

cryptograph

y technique

is

implemented

.

Nevertheless

, sequence

number

randomizatio

n may

prevent IP

spoofing

Yes,

ciphering and

integrity based on

MAC

No Yes, packets

have

confidentiality

and integrity

protection.

Moreover, it

verifies the

identity using

cookies

exchange during

association

setup, reducing

the possibility

of DoS, MitM,

masquerade

In some cases, the motivations justifying the assertion have been inserted in the Table 5.

Before concluding this section, it is noteworthy to observe that more than one event can generate the

same threat. In the following Table 6 (which has been taken and copied from [3]) the hazardous events

are related to the generated threat indicated in Table 4.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

65 | 79

Table 6: Relationship between hazardous events and threats (Table A.1 in [3])

Hazardous

Events

Threats

Repetition Deletion Insertion Re-

sequencing

Corruption Delay Masquerade

HW systematic

failure

X X X X X X

SW systematic

failure

X X X X X X

Cross-talk X X X

Wires breaking X X X

Antenna

misalignment

 X X

Cabling errors X X X X

HW random

failures

X X X X X X

HW ageing X X X X X X

Use of

uncalibrated

instruments

X X X X X X

Use of

unsuitable

instruments

X X X X X X

Incorrect HW

replacement

X X X X X X

Fading effects X X X X

EMI X X

Human

mistakes

X X X X X X

Thermal noise X X

Magnetic storm X X X

Fire X X X

Earthquake X X X

Lightning X X X

Overloading of

TX system

 X X

Wire tapping X X X X X X

HW damage or

breaking

 X X X

Unauthorized

SW

modifications

(a)

X X X X X X X*

Transmission of

unauthorized

messages (a)

X X X*

* In this case the message is fraudulent from the beginning; a strong defense is needed, for example the use of a

key.

Starting from Table 6 it is possible to evaluate the robustness of the considered transport protocols to

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

66 | 79

the security threats. In particular, in Table 7 we have indicated whether one transport protocol

implements countermeasure able to counteract the effect of each one of the threats (in the row in

Table 7). As an example, the TCP has a sequence number in its header format (but not a timestamp)

thus guaranteeing robustness against the repetition threat.

Table 7: Implemented countermeasures by transport protocols

Threats TCP TCP+TLS SCTP SCTP+TLS UDP QUIC

Repetition X X X X X
Deletion X X X X X
Insertion X X X X X X
Re-sequencing X X X X X
Corruption X X X X X X
Delay X X X X X
Masquerade X X X X X X

Intersecting the data in Table 5, Table 6 and Table 7 allows to assess if any of considered transport

protocol is robust to the possible set of hazardous events. To this purpose, results of this analysis are

summarized in Table 8 where we have related the set of hazardous events and the transport protocols.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

67 | 79

Table 8: Robustness of considered transport protocols against hazardous events.

 Repetition Deletion Insertion Re-sequencing Corruption Delay Masquerade

HW systematic

failure

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

SW systematic

failure

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

Cross-talk TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

 TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

Wires breaking TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

 TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

Antenna

misalignment

 TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

 TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

68 | 79

Cabling errors TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

 TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

HW random

failures

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

HW ageing TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

Use of

uncalibrated

instruments

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

Use of

unsuitable

instruments

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

69 | 79

Incorrect HW

replacement

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

Fading effects TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

 TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

EMI TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

 TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

Human

mistakes

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

Thermal noise TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

 TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

70 | 79

Magnetic storm TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

 TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

Fire TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

 TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

Earthquake TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

 TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

Lightning TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

 TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

Overloading of

TX system

 TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

 TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

71 | 79

Wire tapping TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

HW damage or

breaking

 TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

 TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

Unauthorized

SW

modifications

(a)

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP, TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

Transmission

of

unauthorized

messages (a)

TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

QUIC

 TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

 TCP,

TCP+TLS,

SCTP,

SCTP+TLS,

UDP, QUIC

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

72 | 79

7.4 Comments on security aspects of HTTP and FTP and their secure versions

HTTP

HTTP is used for communications over the Internet, in general adopted by web browsers to retrieve

web pages from a remote server (https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html).

The client uses simple messages and methods to facilitate applications to get the data from the

server. Case sensitive examples are reported in Table 9, while others are in

https://www.tutorialspoint.com/http/http_requests.htm.

Table 9: Examples of HTTP 1.1 methods

Method Description

GET To retrieve information from the given server using a given URI

POST To send data to the server (e.g., customer information, file upload) using

HTML

PUT Replaces all the current representations of the target resource with the

uploaded content

DELETE Removes all the current representations of the target resource given by URI

CONNECT Establishes a tunnel to the server identified by a given URI

HTTP commands are sent in plaintext and anyone monitoring the connection can read them. Then,

any data sent through this protocol such as a password, a credit card number, or any other data

entered into a form can be seen by others.

In addition to the sniffing of transmitted data using HTTP, other threats are:

• The possibility to access other files in the server by exploiting a sniffed URI from another request.

An attacker can slightly modify the sniffed URI and retrieve other file on the same server without

having the permission. A possible solution can be the disaggregation of the path name and the file.

• Another threat is based on the deliberate mis-association of the IP address and the DNS (Domain

Name System) name. This attack is called DNS spoofing and can be counteract by updating the DNS

information instead of using those stored in the local cache.

• Similarly to the previous one, the same request can be valid for more than one servers in case an

organization has multiple locations. Then, one server can be accessed instead of the one contact by

the request. The problem in this case can be that resources can be overwritten in the wrong server.

• When a client accesses a server with credentials for its authentication, the browser can store them

indefinitely. Time outs and expiring passwords should be used to mitigate this threat.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html
https://www.tutorialspoint.com/http/http_requests.htm

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

73 | 79

• In addition to remote servers, data can be stored in proxy servers and local caches to improve the

time responsiveness. Then, they can store both sensitive user data and organization data as they

behave as a men-int-the-middle in the communication, then being appealing by attackers. Further

protection should be implemented by the proxy and cache providers. Anyway, it is not usual in the

rail application to have a proxy.

The inclusion of the TLS protocol layer above the transport protocol allow to encrypt the payload

and then to avoid many of the threats listed in the previous points.

FTP

Similarly to HTTP, FTP has a client-server architecture and it is used by applications to easily

transfer files between computers over the Internet. Commands are simple and, even in this case, are

transmitted in plain text. Examples of command lines are [27]:

Table 10: Examples of FTP commands

Command Description

RETR Get file from the remote computer

STOR Accept data and store as a file

RNFR, RNTO Renames a file

QUIT Exits from FTP

DELE Deletes a file

A list of other FTP commands are available in [27]. Other FTP commands for Windows server are

available at: https://www.serv-u.com/ftp-server-windows/commands, while for IBM systems at

https://www.ibm.com/docs/en/aix/7.2?topic=f-ftp-command.

FTP is considered a non-secure protocol because it relies on clear-text usernames and passwords

for authentication and the data transferred is not encrypted (https://www.integrate.io/blog/5-tips-

on-avoiding-ftp-security-issues/). It makes FTP vulnerable to malicious techniques such as packet

sniffing, spoofing attacks, and brute force attacks.

Possible solutions are reported in the following.

• The adoption of a transport layer which implements a security layer is the most popular solution as

they create an encrypted connection between the client and the server. Similarly to HTTP, the usage

of TCP and TLS enable to create the FTPS and then to solve many of the problems related to the

threats similar to that of HHTP.

• Instead of using TLS, other solutions are available. One of them is the Secure Socket Layer (SSL),

and SSH File Transfer Protocol (also known as Secure File Transfer Protocol or SFTP); [28]

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://www.serv-u.com/ftp-server-windows/commands
https://www.ibm.com/docs/en/aix/7.2?topic=f-ftp-command
https://www.integrate.io/blog/5-tips-on-avoiding-ftp-security-issues/
https://www.integrate.io/blog/5-tips-on-avoiding-ftp-security-issues/

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

74 | 79

• Another solution exploits the security functionalities provided at application level by common cloud

storage services such as Google Cloud Storage or Microsoft OneDrive. Nevertheless, in this case rail

applications should be deployed in external and public clouds, that in some cases could not be

accepted by rail operators;

• In the transmission the file could be encrypted its self, overcoming the plain transmission over

unsecure channel. Then, the file should be encrypted at the server and decrypted at the client. Some

delays con be increased;

• Finally, an IP blacklist can be considered to reduce the malicious nodes to eavesdrop the FTP file or

a whitelist to restrict the access to the server, containing the FTP file.

7.5 Conclusions on security analysis

Concerning the transport protocols, we noted that the usage of the most popular IETF transport

protocols and the corresponding secured versions provide a good robustness to many or all of the

threats listed in Table 7. The only protocol presenting major problems is UDP where simplicity is

obtained at the expense of reliability and security. TCP and SCTP allows to secure transmissions

against threats. In addition, when TLS is used, both in conjunction with TCP and SCTP or in an

integrated manner in the QUIC, all the security problems are solved,

Concerning the application protocols stacked above the transport layer, HTTP and FTP do not

implement any security mechanism. Generally, security issues at this level are solved by providing

a security layer below them. To this purpose the addition of TLS above the transport protocol such

as TCP or the usage of a transport protocol already embedding TLS such as QUIC, allows to create

a secure version of the two application protocols i.e., the HTTPS and the FTPS. Theoretically, in

same specific cases, security layers or algorithms could be added even at application level (i.e.,

above the HTTP and FTP). Examples are those of the banks in case of their clients have to access

to their bank account and make economic transactions. These cases are very specific and usually

require to have a dedicated user equipment.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

75 | 79

8. Conclusions

This deliverable responds to the objective a in workstream 2, and it is devoted to identification of

the appropriate transport protocols ensuring the required communication and characteristics

capabilities in the application development stage as well as of security aspects.

To assess the performance of the secure version of the transport and of some combinations of

application and transport protocols we have used the software emulator developed in the Task 3.3

which allows to reproduce the behavior of the communication bearers at IP protocol level. Then, in

this case we used it to evaluate the performance of the transport protocols: TCP cubic, TCP BBR,

UDP and SCTP and the recent protocol QUIC.

Performances have been evaluated in terms of the statistics (i.e., cumulative distribution function,

mean, standard deviation etc.) of:

1. The achievable throughput,

2. The download time,

3. The message delay.

Analysis has been carried out in mainline railway scenario in different operating conditions i.e.,

variable latency, time variability of the available transmission capacity and packet loss.

In Table 11 we summarize and comment the secure versions of the considered transport protocol(s)

to be selected for each ACS application class. From results presented in previous Sections we

observe that transport protocol performance are practically independent from the selected railway

scenario (e.g., mainline and regional).

Table 11: Summary of transport and application protocols for ACS application classes.

ACS Application

class

Transport/Application

protocol

Note

Signaling SCTP+TLS,

TCP BBR+TLS,

TCP Cubic+TLS and

QUIC

They similar performance in case of low

latency. TCP BBR, TCP Cubic and QUIC

present a reduced message delay for higher

latency introduced by the channel.

Nevertheless, as shown in Del. 3.4, in the

case the packets are enqueued (we have an

additional delay due to queue) SCTP

experiences lower latency (even though

throughput is also reduced).

Critical Voice UDP(*), TCP BBR,

TCP-BBR+TLS

VoIP based voice services use TCP to

establish an initial connection and for

signaling. In this case TCP+BBR could be a

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

76 | 79

good choice. (*)UDP is the default (and

mandatory) choice for transferring voice

data when VoIP is (obviously) considered. It

could be of some interest to test the usage of

TCP with BBR for voice data transfer in low

PL scenarios. However, this choice would

mean to abandon the VoIP standard.

TCP+TLS could also be used for the initial

connection (for securing signaling data)

transporting signaling as well as for

transporting SIP packets; in fact, TCP-BBR

+TLS provides lower delay in all the

considered conditions.

Critical Data TCP BBR, QUIC They experience higher throughput above all

in lossy communication channel

HTTP, HTTP/3, FTP

HTTPS, FTPS

In the case of low requested latency, sending

in clear text can be provided (through the

http and FTP protocols)

Critical Video UDP*, QUIC, TCP

BBR

*Even though in high lossy environments

UDP should be avoided, typically for video

data transmissions UDP; however, UDP is

not used alone; in fact, the typical protocol

used for video transmissions includes

RTP/RTPC protocols. TCP BBR could be

used because is less sensitive to loss in terms

of latency mainly for signaling such as

RTPC (when UDP is not used even for

RTPC) and especially for SIP protocol (if

and when it is used for).

The possibility of stacking RTP/RTPC over

QUIC is currently under study and seems to

be a promising solution. At the moment of

this writing only preliminary proposal exist

and no software implementations of

QUIC+RTP/RTPC are available.

Non-critical Data TCP BBR, TCP cubic Most of the traffic uses TCP and both TCP

variants could be used provided coexistence

issues are taken into account.

HTTP, HTTP/3, FTP

HTTPS, FTPS

In the case of low requested latency, sending

in clear text can be provided (through the

http and FTP protocols)

Internet Connectivity QUIC, TCP BBR, TCP

cubic

Most of the traffic uses TCP. UDP is

considered for some applications protocols

that use it as default transport protocol.

HTTP, HTTP/3, FTP

HTTPS, FTPS

Depending on the service types and their

particular applications

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

77 | 79

In case of lossy channel, results show that in every scenario the TCP BBR and QUIC protocols offer

the better performance since they are:

a. able to track the available transmission channel capacity which in a rail scenario can vary with time,

b. resistance (i.e., practical insensitivity) to packet loss; in fact, we have observed that in all cases since

the CDF of the TH at PL=1% are similar to that obtained at PL=0%.

The QUIC protocol is of great interest since it provides robust performance in many (all) the

considered scenarios. However, at the moment of this writing it suffers of many drawbacks that can

limit its diffusion especially in the ACS environment. QUIC is currently under standardization and

revision. Actually at least two versions exist of QUIC (i.e., the Google version and the IETF

version). Some implementations of QUIC are available on the open-source community and the LS-

QUIC is suggested for being used in a production environment. In addition, QUIC is not integrated

in the kernel of the most important OSs such as Linux and many times the existing servers do not

implement or support QUIC.

In the second part of this deliverable, to be compliant with Task 3.6 activities, we have analyzed

security aspects of the considered transport and application protocols. We have observed that the

robustness against the several threats listed in Table 5 of the considered application protocols is

mainly related to the characteristics of the underlying transport protocol. Obviously, additional

security mechanisms could be added at application level i.e., above the application protocol.

Even in this case TCP and QUIC implement all the security mechanisms able to successfully

counteract many of the threats indicated in Table and, in the QUIC case, also to guarantee security.

The addition of the TLS layer to TCP allows to guarantee security against the considered threats.

To summarize the main findings in the WP3 activities we should start by observing that ACS system

has been conceived, designed and build around the IETF protocols. For this reason, we believe that

railway developers of ACS should orient their choice on well accepted IETF transport protocols

such as TCP and also UDP for very limited secondary applications (refer to Table 11indicating the

ACS traffic classes). In particular from the analysis carried out in the AB4Rail WP3 activities it has

been clearly emerged that BBR congestion control should be the preferred choice so to counteract

packet loss effects and to guarantee the maximum achievable throughput. However, as indicated in

Del.3.4 [1] the BBR could suffer of coexistence problems with other TCP links using different

congestion control strategies such as Cubic. For this reason, it is important that the on-board ACS-

GW as well as the ACS-GW at the trackside guarantee that all the TCP connections sharing the

same ACS tunnel use the same congestion control algorithm so to avoid un-desired capacity starving

phenomena.

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

78 | 79

9. References

[1] R. Giuliano, F. Mazzenga, A. Vizzarri, “Identification of transport protocol for railway

applications”, AB4Rail project, Deliverable 3.4, 29 Apr. 2022

[2] AB4Rail “ALTERNATIVE BEARERS FOR RAILWAY”, SECTIONS 1-3, technical

proposal annex, GA 101014517, Nov. 2020, ID: S2R-OC-IP2-02-2020.

[3] “Railway applications – Communication, signalling and processing systems – Safety-related

communication in transmission systems”, European Standard EN 50159, 1 Sep. 2010.

[4] A. Vizzarri, F. Vatalaro, F. Mazzenga, R. Giuliano, “IP Emulator and scenarios definition”,

AB4Rail project, Deliverable 3.3, 6 Nov 2021.

[5] A. Vizzarri, F. Vatalaro, F. Mazzenga, R. Giuliano, “Review of ACS, of existing transport

protocols, application protocols, railway applications”, AB4Rail project, Deliverable 3.1, 25

May 2021.

[6] “What is QUIC?” 30 Sep. 2020, https://nordvpn.com/it/blog/what-is-quic-protocol/

[7] M. Thomson, “QUIC: A UDP-Based Multiplexed and Secure Transport”, RFC 9000, ISSN:

2070-1721, May 2021, https://datatracker.ietf.org/doc/html/rfc9000, https://www.rfc-

editor.org/rfc/rfc9000#name-error-handling, https://www.rfc-editor.org/rfc/rfc9000#name-

security-considerations

[8] Thomson, M., and S. Turner, “Using TLS to Secure QUIC”, RFC 9001, DOI

10.17487/RFC9001, May 2021, <https://www.rfc-editor.org/info/rfc9001>,

https://quicwg.org/base-drafts/rfc9001.html#aead, https://quicwg.org/base-

drafts/rfc9001.html

[9] “QUIC and HTTP/3 Library”, https://www.litespeedtech.com/quic-http3-library

[10] Belma Turkovic, Fernando A. Kuipers and Steve Uhlig, “Fifty Shades of Congestion Control:

A Performance and Interactions Evaluation”, Computer Science, 9 March 2019.

[11] “Transmission Control Protocol”, RFC 793, https://datatracker.ietf.org/doc/html/rfc793

[12] “TCP Congestion Control”, RFC 5681, https://datatracker.ietf.org/doc/html/rfc5681

[13] “CUBIC for Fast Long-Distance Networks”, RFC 8312,

https://datatracker.ietf.org/doc/html/rfc8312

[14] “The Transport Layer Security (TLS) Protocol, Version 1.2”, RFC 5246,

https://datatracker.ietf.org/doc/html/rfc5246

[15] “The Transport Layer Security (TLS) Protocol Version 1.3”, RFC 8446,

https://datatracker.ietf.org/doc/html/rfc8446

[16] “Certificate Transparency”, RFC 6962, https://datatracker.ietf.org/doc/html/rfc6962

[17] Chen, S., Jero, S., Jagielski, M. et al. “Secure Communication Channel Establishment: TLS

1.3 (over TCP Fast Open) versus QUIC”, J Cryptol 34, 26 (2021).

https://doi.org/10.1007/s00145-021-09389-w

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://nordvpn.com/it/blog/what-is-quic-protocol/
https://datatracker.ietf.org/doc/html/rfc9000
https://www.rfc-editor.org/rfc/rfc9000#name-error-handling
https://www.rfc-editor.org/rfc/rfc9000#name-error-handling
https://www.rfc-editor.org/rfc/rfc9000#name-security-considerations
https://www.rfc-editor.org/rfc/rfc9000#name-security-considerations
https://www.rfc-editor.org/info/rfc9001
https://quicwg.org/base-drafts/rfc9001.html#aead
https://quicwg.org/base-drafts/rfc9001.html
https://quicwg.org/base-drafts/rfc9001.html
https://www.litespeedtech.com/quic-http3-library
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc8312
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc6962
https://doi.org/10.1007/s00145-021-09389-w

[AB4Rail] GA [101014517] D [3.5]

[Analysis of options for transport and application protocols and of their secure versions]

79 | 79

[18] “An Introduction to the Stream Control Transmission Protocol (SCTP)”, RFC 3286,

https://datatracker.ietf.org/doc/html/rfc3286

[19] “Stream Control Transmission Protocol”, RFC 4960,

https://datatracker.ietf.org/doc/html/rfc4960

[20] “Stream Control Transmission Protocol”, RFC 9260, https://datatracker.ietf.org/doc/rfc9260/

[21] “TCP Congestion Control”, RFC 2581, https://datatracker.ietf.org/doc/html/rfc2581

[22] “TCP Congestion Control”, RFC 5681, https://datatracker.ietf.org/doc/html/rfc5681

[23] “User Datagram Protocol”, RFC 768, https://datatracker.ietf.org/doc/html/rfc768

[24] “QUIC Loss Detection and Congestion Control”, RFC 9002,

https://datatracker.ietf.org/doc/html/rfc9002

[25] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F. Kouranov, I.

Swett, J. Iyengar, et al., “The quic transport protocol: Design and internet-scale deployment,”

in Proceedings of the Conference of the ACM Special Interest Group on Data

Communication, pp. 183–196, ACM, 2017.

[26] Sharma, A., Kamthania, D. (2022). QUIC Protocol Based Monitoring Probes for Network

Devices Monitor and Alerts. In: Singh, U., Abraham, A., Kaklauskas, A., Hong, TP. (eds)

Smart Sensor Networks. Studies in Big Data, vol 92. Springer, Cham.

https://doi.org/10.1007/978-3-030-77214-7_6

[27] “File Transfer Protocol (FTP)”, RFC 959, https://www.rfc-editor.org/rfc/rfc959

[28] “An overview of the SSL or TLS handshake”, IBM document, 30 Jun. 2022,

https://www.ibm.com/docs/en/ibm-mq/7.5?topic=ssl-overview-tls-handshake

http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/nuovo-logo-horizon-2020/view
https://datatracker.ietf.org/doc/html/rfc3286
https://datatracker.ietf.org/doc/html/rfc4960
https://datatracker.ietf.org/doc/rfc9260/
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc9002
https://doi.org/10.1007/978-3-030-77214-7_6
https://www.rfc-editor.org/rfc/rfc959
https://www.ibm.com/docs/en/ibm-mq/7.5?topic=ssl-overview-tls-handshake

